Sort by:
Page 94 of 99986 results

Development of a deep learning method for phase retrieval image enhancement in phase contrast microcomputed tomography.

Ding XF, Duan X, Li N, Khoz Z, Wu FX, Chen X, Zhu N

pubmed logopapersMay 13 2025
Propagation-based imaging (one method of X-ray phase contrast imaging) with microcomputed tomography (PBI-µCT) offers the potential to visualise low-density materials, such as soft tissues and hydrogel constructs, which are difficult to be identified by conventional absorption-based contrast µCT. Conventional µCT reconstruction produces edge-enhanced contrast (EEC) images which preserve sharp boundaries but are susceptible to noise and do not provide consistent grey value representation for the same material. Meanwhile, phase retrieval (PR) algorithms can convert edge enhanced contrast to area contrast to improve signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) but usually results to over-smoothing, thus creating inaccuracies in quantitative analysis. To alleviate these problems, this study developed a deep learning-based method called edge view enhanced phase retrieval (EVEPR), by strategically integrating the complementary spatial features of denoised EEC and PR images, and further applied this method to segment the hydrogel constructs in vivo and ex vivo. EVEPR used paired denoised EEC and PR images to train a deep convolutional neural network (CNN) on a dataset-to-dataset basis. The CNN had been trained on important high-frequency details, for example, edges and boundaries from the EEC image and area contrast from PR images. The CNN predicted result showed enhanced area contrast beyond conventional PR algorithms while improving SNR and CNR. The enhanced CNR especially allowed for the image to be segmented with greater efficiency. EVEPR was applied to in vitro and ex vivo PBI-µCT images of low-density hydrogel constructs. The enhanced visibility and consistency of hydrogel constructs was essential for segmenting such material which usually exhibit extremely poor contrast. The EVEPR images allowed for more accurate segmentation with reduced manual adjustments. The efficiency in segmentation allowed for the generation of a sizeable database of segmented hydrogel scaffolds which were used in conventional data-driven segmentation applications. EVEPR was demonstrated to be a robust post-image processing method capable of significantly enhancing image quality by training a CNN on paired denoised EEC and PR images. This method not only addressed the common issues of over-smoothing and noise susceptibility in conventional PBI-µCT image processing but also allowed for efficient and accurate in vitro and ex vivo image processing applications of low-density materials.

Individual thigh muscle and proximal femoral features predict displacement in femoral neck Fractures: An AI-driven CT analysis.

Yoo JI, Kim HS, Kim DY, Byun DW, Ha YC, Lee YK

pubmed logopapersMay 13 2025
Hip fractures, particularly among the elderly, impose a significant public health burden due to increased morbidity and mortality. Femoral neck fractures, commonly resulting from low-energy falls, can lead to severe complications such as avascular necrosis, and often necessitate total hip arthroplasty. This study harnesses AI to enhance musculoskeletal assessments by performing automatic muscle segmentation on whole thigh CT scans and detailed cortical measurements using the StradView program. The primary aim is to improve the prediction and prevention of severe femoral neck fractures, ultimately supporting more effective rehabilitation and treatment strategies. This study measured anatomical features from whole thigh CT scans of 60 femoral neck fracture patients. An AI-driven individual muscle segmentation model (a dice score of 0.84) segmented 27 muscles in the thigh region, to calculate muscle volumes. Proximal femoral bone parameters were measured using StradView, including average cortical thickness, inner density and FWHM at four regions. Correlation analysis evaluated relationships between muscle features, cortical parameters, and fracture displacement. Machine learning models (Random Forest, SVM and Multi-layer Perceptron) predicted displacement using these variables. Correlation analysis showed significant associations between femoral neck displacement and trabecular density at the femoral neck/intertrochanter, as well as volumes of specific thigh muscles such as the Tensor fasciae latae. Machine learning models using a combined feature set of thigh muscle volumes and proximal femoral parameters performed best in predicting displacement, with the Random Forest model achieving an F1 score of 0.91 and SVM model 0.93. Decreased volumes of the Tensor fasciae latae, Rectus femoris, and Semimembranosus muscles, coupled with reduced trabecular density at the femoral neck and intertrochanter, were significantly associated with increased fracture displacement. Notably, our SVM model-integrating both muscle and femoral features-achieved the highest predictive performance. These findings underscore the critical importance of muscle strength and bone density in rehabilitation planning and highlight the potential of AI-driven predictive models for improving clinical outcomes in femoral neck fractures.

Rethinking femoral neck anteversion assessment: a novel automated 3D CT method compared to traditional manual techniques.

Xiao H, Yibulayimu S, Zhao C, Sang Y, Chen Y, Ge Y, Sun Q, Ming Y, Bei M, Zhu G, Song Y, Wang Y, Wu X

pubmed logopapersMay 13 2025
To evaluate the accuracy and reliability of a novel automated 3D CT-based method for measuring femoral neck anteversion (FNA) compared to three traditional manual methods. A total of 126 femurs from 63 full-length CT scans (35 men and 28 women; average age: 52.0 ± 14.7 years) were analyzed. The automated method used a deep learning network for femur segmentation, landmark identification, and anteversion calculation, with results generated based on two axes: Auto_GT (using the greater trochanter-to-intercondylar notch center axis) and Auto_P (using the piriformis fossa-to-intercondylar notch center axis). These results were validated through manual landmark annotation. The same dataset was assessed using three conventional manual methods: Murphy, Reikeras, and Lee methods. Intra- and inter-observer reliability were assessed using intraclass correlation coefficients (ICCs), and pairwise comparisons analyzed correlations and differences between methods. The automated methods produced consistent FNA measurements (Auto_GT: 17.59 ± 9.16° vs. Auto_P: 17.37 ± 9.17° on the right; 15.08 ± 9.88° vs. 14.84 ± 9.90° on the left). Intra-observer ICCs ranged from 0.864 to 0.961, and inter-observer ICCs between Auto_GT and the manual methods were high, except for the Lee method. No significant differences were observed between the two automated methods or between the automated and manual verification methods. Moreover, strong correlations (R > 0.9, p < 0.001) were found between Auto_GT and the manual methods. The novel automated 3D CT-based method demonstrates strong reproducibility and reliability for measuring femoral neck anteversion, with performance comparable to traditional manual techniques. These results indicate its potential utility for preoperative planning, postoperative evaluation, and computer-assisted orthopedic procedures. Not applicable.

Automatic deep learning segmentation of mandibular periodontal bone topography on cone-beam computed tomography images.

Palkovics D, Molnar B, Pinter C, García-Mato D, Diaz-Pinto A, Windisch P, Ramseier CA

pubmed logopapersMay 13 2025
This study evaluated the performance of a multi-stage Segmentation Residual Network (SegResNet)-based deep learning (DL) model for the automatic segmentation of cone-beam computed tomography (CBCT) images of patients with stage III and IV periodontitis. Seventy pre-processed CBCT scans from patients undergoing periodontal rehabilitation were used for training and validation. The model was tested on 10 CBCT scans independent from the training dataset by comparing results with semi-automatic (SA) segmentations. Segmentation accuracy was assessed using the Dice similarity coefficient (DSC), Intersection over Union (IoU), and Hausdorff distance 95<sup>th</sup> percentile (HD95). Linear periodontal measurements were performed on four tooth surfaces to assess the validity of the DL segmentation in the periodontal region. The DL model achieved a mean DSC of 0.9650 ± 0.0097, with an IoU of 0.9340 ± 0.0180 and HD95 of 0.4820 mm ± 0.1269 mm, showing strong agreement with SA segmentation. Linear measurements revealed high statistical correlations between the mesial, distal, and lingual surfaces, with intraclass correlation coefficients (ICC) of 0.9442 (p<0.0001), 0.9232 (p<0.0001), and 0.9598(p<0.0001), respectively, while buccal measurements revealed lower consistency, with an ICC of 0.7481 (p<0.0001). The DL method reduced the segmentation time by 47 times compared to the SA method. Acquired 3D models may enable precise treatment planning in cases where conventional diagnostic modalities are insufficient. However, the robustness of the model must be increased to improve its general reliability and consistency at the buccal aspect of the periodontal region. This study presents a DL model for the CBCT-based segmentation of periodontal defects, demonstrating high accuracy and a 47-fold time reduction compared to SA methods, thus improving the feasibility of 3D diagnostics for advanced periodontitis.

Artificial Intelligence in Sincalide-Stimulated Cholescintigraphy: A Pilot Study.

Nguyen NC, Luo J, Arefan D, Vasireddi AK, Wu S

pubmed logopapersMay 13 2025
Sincalide-stimulated cholescintigraphy (SSC) calculates the gallbladder ejection fraction (GBEF) to diagnose functional gallbladder disorder. Currently, artificial intelligence (AI)-driven workflows that integrate real-time image processing and organ function calculation remain unexplored in nuclear medicine practice. This pilot study explored an AI-based application for gallbladder radioactivity tracking. We retrospectively analyzed 20 SSC exams, categorized into 10 easy and 10 challenging cases. Two human operators (H1 and H2) independently annotated the gallbladder regions of interest manually over the course of the 60-minute SSC. A U-Net-based deep learning model was developed to automatically segment gallbladder masks, and a 10-fold cross-validation was performed for both easy and challenging cases. The AI-generated masks were compared with human-annotated ones, with Dice similarity coefficients (DICE) used to assess agreement. AI achieved an average DICE of 0.746 against H1 and 0.676 against H2, performing better in easy cases (0.781) than in challenging ones (0.641). Visual inspection showed AI was prone to errors with patient motion or low-count activity. This study highlights AI's potential in real-time gallbladder tracking and GBEF calculation during SSC. AI-enabled real-time evaluation of nuclear imaging data holds promise for advancing clinical workflows by providing instantaneous organ function assessments and feedback to technologists. This AI-enabled workflow could enhance diagnostic efficiency, reduce scan duration, and improve patient comfort by alleviating symptoms associated with SSC, such as abdominal discomfort due to sincalide administration.

Automatic CTA analysis for blood vessels and aneurysm features extraction in EVAR planning.

Robbi E, Ravanelli D, Allievi S, Raunig I, Bonvini S, Passerini A, Trianni A

pubmed logopapersMay 12 2025
Endovascular Aneurysm Repair (EVAR) is a minimally invasive procedure crucial for treating abdominal aortic aneurysms (AAA), where precise pre-operative planning is essential. Current clinical methods rely on manual measurements, which are time-consuming and prone to errors. Although AI solutions are increasingly being developed to automate aspects of these processes, most existing approaches primarily focus on computing volumes and diameters, falling short of delivering a fully automated pre-operative analysis. This work presents BRAVE (Blood Vessels Recognition and Aneurysms Visualization Enhancement), the first comprehensive AI-driven solution for vascular segmentation and AAA analysis using pre-operative CTA scans. BRAVE offers exhaustive segmentation, identifying both the primary abdominal aorta and secondary vessels, often overlooked by existing methods, providing a complete view of the vascular structure. The pipeline performs advanced volumetric analysis of the aneurysm sac, quantifying thrombotic tissue and calcifications, and automatically identifies the proximal and distal sealing zones, critical for successful EVAR procedures. BRAVE enables fully automated processing, reducing manual intervention and improving clinical workflow efficiency. Trained on a multi-center open-access dataset, it demonstrates generalizability across different CTA protocols and patient populations, ensuring robustness in diverse clinical settings. This solution saves time, ensures precision, and standardizes the process, enhancing vascular surgeons' decision-making.

Automatic Quantification of Ki-67 Labeling Index in Pediatric Brain Tumors Using QuPath

Spyretos, C., Pardo Ladino, J. M., Blomstrand, H., Nyman, P., Snodahl, O., Shamikh, A., Elander, N. O., Haj-Hosseini, N.

medrxiv logopreprintMay 12 2025
AO_SCPLOWBSTRACTC_SCPLOWThe quantification of the Ki-67 labeling index (LI) is critical for assessing tumor proliferation and prognosis in tumors, yet manual scoring remains a common practice. This study presents an automated workflow for Ki-67 scoring in whole slide images (WSIs) using an Apache Groovy code script for QuPath, complemented by a Python-based post-processing script, providing cell density maps and summary tables. The tissue and cell segmentation are performed using StarDist, a deep learning model, and adaptive thresholding to classify Ki-67 positive and negative nuclei. The pipeline was applied to a cohort of 632 pediatric brain tumor cases with 734 Ki-67-stained WSIs from the Childrens Brain Tumor Network. Medulloblastoma showed the highest Ki-67 LI (median: 19.84), followed by atypical teratoid rhabdoid tumor (median: 19.36). Moderate values were observed in brainstem glioma-diffuse intrinsic pontine glioma (median: 11.50), high-grade glioma (grades 3 & 4) (median: 9.50), and ependymoma (median: 5.88). Lower indices were found in meningioma (median: 1.84), while the lowest were seen in low-grade glioma (grades 1 & 2) (median: 0.85), dysembryoplastic neuroepithelial tumor (median: 0.63), and ganglioglioma (median: 0.50). The results aligned with the consensus of the oncology, demonstrating a significant correlation in Ki-67 LI across most of the tumor families/types, with high malignancy tumors showing the highest proliferation indices and lower malignancy tumors exhibiting lower Ki-67 LI. The automated approach facilitates the assessment of large amounts of Ki-67 WSIs in research settings.

AI-based volumetric six-tissue body composition quantification from CT cardiac attenuation scans for mortality prediction: a multicentre study.

Yi J, Marcinkiewicz AM, Shanbhag A, Miller RJH, Geers J, Zhang W, Killekar A, Manral N, Lemley M, Buchwald M, Kwiecinski J, Zhou J, Kavanagh PB, Liang JX, Builoff V, Ruddy TD, Einstein AJ, Feher A, Miller EJ, Sinusas AJ, Berman DS, Dey D, Slomka PJ

pubmed logopapersMay 12 2025
CT attenuation correction (CTAC) scans are routinely obtained during cardiac perfusion imaging, but currently only used for attenuation correction and visual calcium estimation. We aimed to develop a novel artificial intelligence (AI)-based approach to obtain volumetric measurements of chest body composition from CTAC scans and to evaluate these measures for all-cause mortality risk stratification. We applied AI-based segmentation and image-processing techniques on CTAC scans from a large international image-based registry at four sites (Yale University, University of Calgary, Columbia University, and University of Ottawa), to define the chest rib cage and multiple tissues. Volumetric measures of bone, skeletal muscle, subcutaneous adipose tissue, intramuscular adipose tissue (IMAT), visceral adipose tissue (VAT), and epicardial adipose tissue (EAT) were quantified between automatically identified T5 and T11 vertebrae. The independent prognostic value of volumetric attenuation and indexed volumes were evaluated for predicting all-cause mortality, adjusting for established risk factors and 18 other body composition measures via Cox regression models and Kaplan-Meier curves. The end-to-end processing time was less than 2 min per scan with no user interaction. Between 2009 and 2021, we included 11 305 participants from four sites participating in the REFINE SPECT registry, who underwent single-photon emission computed tomography cardiac scans. After excluding patients who had incomplete T5-T11 scan coverage, missing clinical data, or who had been used for EAT model training, the final study group comprised 9918 patients. 5451 (55%) of 9918 participants were male and 4467 (45%) of 9918 participants were female. Median follow-up time was 2·48 years (IQR 1·46-3·65), during which 610 (6%) patients died. High VAT, EAT, and IMAT attenuation were associated with an increased all-cause mortality risk (adjusted hazard ratio 2·39, 95% CI 1·92-2·96; p<0·0001, 1·55, 1·26-1·90; p<0·0001, and 1·30, 1·06-1·60; p=0·012, respectively). Patients with high bone attenuation were at reduced risk of death (0·77, 0·62-0·95; p=0·016). Likewise, high skeletal muscle volume index was associated with a reduced risk of death (0·56, 0·44-0·71; p<0·0001). CTAC scans obtained routinely during cardiac perfusion imaging contain important volumetric body composition biomarkers that can be automatically measured and offer important additional prognostic value. The National Heart, Lung, and Blood Institute, National Institutes of Health.

JSover: Joint Spectrum Estimation and Multi-Material Decomposition from Single-Energy CT Projections

Qing Wu, Hongjiang Wei, Jingyi Yu, S. Kevin Zhou, Yuyao Zhang

arxiv logopreprintMay 12 2025
Multi-material decomposition (MMD) enables quantitative reconstruction of tissue compositions in the human body, supporting a wide range of clinical applications. However, traditional MMD typically requires spectral CT scanners and pre-measured X-ray energy spectra, significantly limiting clinical applicability. To this end, various methods have been developed to perform MMD using conventional (i.e., single-energy, SE) CT systems, commonly referred to as SEMMD. Despite promising progress, most SEMMD methods follow a two-step image decomposition pipeline, which first reconstructs monochromatic CT images using algorithms such as FBP, and then performs decomposition on these images. The initial reconstruction step, however, neglects the energy-dependent attenuation of human tissues, introducing severe nonlinear beam hardening artifacts and noise into the subsequent decomposition. This paper proposes JSover, a fundamentally reformulated one-step SEMMD framework that jointly reconstructs multi-material compositions and estimates the energy spectrum directly from SECT projections. By explicitly incorporating physics-informed spectral priors into the SEMMD process, JSover accurately simulates a virtual spectral CT system from SE acquisitions, thereby improving the reliability and accuracy of decomposition. Furthermore, we introduce implicit neural representation (INR) as an unsupervised deep learning solver for representing the underlying material maps. The inductive bias of INR toward continuous image patterns constrains the solution space and further enhances estimation quality. Extensive experiments on both simulated and real CT datasets show that JSover outperforms state-of-the-art SEMMD methods in accuracy and computational efficiency.

Prognostic Value Of Deep Learning Based RCA PCAT and Plaque Volume Beyond CT-FFR In Patients With Stent Implantation.

Huang Z, Tang R, Du X, Ding Y, Yang Z, Cao B, Li M, Wang X, Wang W, Li Z, Xiao J, Wang X

pubmed logopapersMay 12 2025
The study aims to investigate the prognostic value of deep learning based pericoronary adipose tissue attenuation computed tomography (PCAT) and plaque volume beyond coronary computed tomography angiography (CTA) -derived fractional flow reserve (CT-FFR) in patients with percutaneous coronary intervention (PCI). A total of 183 patients with PCI who underwent coronary CTA were included in this retrospective study. Imaging assessment included PCAT, plaque volume, and CT-FFR, which were performed using an artificial intelligence (AI) assisted workstation. Kaplan-Meier survival curves analysis and multivariate Cox regression were used to estimate major adverse cardiovascular events (MACE), including non-fatal myocardial infraction (MI), stroke, and mortality. In total, 22 (12%) MACE occurred during a median follow-up period of 38.0 months (34.6-54.6 months). Kaplan-Meier analysis revealed that right coronary artery (RCA) PCAT (p = 0.007) and plaque volume (p = 0.008) were significantly associated with the increase in MACE. Multivariable Cox regression indicated that RCA PCAT (hazard ratios (HR): 2.94, 95%CI: 1.15-7.50, p = 0.025) and plaque volume (HR: 3.91, 95%CI: 1.20-12.75, p = 0.024) were independent predictors of MACE after adjustment by clinical risk factors. However, CT-FFR was not independently associated with MACE in multivariable Cox regression (p = 0.271). Deep learning based RCA PCAT and plaque volume derived from coronary CTA were found to be more strongly associated with MACE than CTFFR in patients with PCI.
Page 94 of 99986 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.