Sort by:
Page 93 of 3513502 results

CT-Based radiomics and deep learning for the preoperative prediction of peritoneal metastasis in ovarian cancers.

Liu Y, Yin H, Li J, Wang Z, Wang W, Cui S

pubmed logopapersAug 13 2025
To develop a CT-based deep learning radiomics nomogram (DLRN) for the preoperative prediction of peritoneal metastasis (PM) in patients with ovarian cancer (OC). A total of 296 patients with OCs were randomly divided into training dataset (N = 207) and test dataset (N = 89). The radiomics features and DL features were extracted from CT images of each patient. Specifically, radiomics features were extracted from the 3D tumor regions, while DL features were extracted from the 2D slice with the largest tumor region of interest (ROI). The least absolute shrinkage and selection operator (LASSO) algorithm was used to select radiomics and DL features, and the radiomics score (Radscore) and DL score (Deepscore) were calculated. Multivariate logistic regression was employed to construct clinical model. The important clinical factors, radiomics and DL features were integrated to build the DLRN. The predictive performance of the models was evaluated using the area under the receiver operating characteristic curve (AUC) and DeLong's test. Nine radiomics features and 10 DL features were selected. Carbohydrate antigen 125 (CA-125) was the independent clinical predictor. In the training dataset, the AUC values of the clinical, radiomics and DL models were 0.618, 0.842, and 0.860, respectively. In the test dataset, the AUC values of these models were 0.591, 0.819 and 0.917, respectively. The DLRN showed better performance than other models in both training and test datasets with AUCs of 0.943 and 0.951, respectively. Decision curve analysis and calibration curve showed that the DLRN provided relatively high clinical benefit in both the training and test datasets. The DLRN demonstrated superior performance in predicting preoperative PM in patients with OC. This model offers a highly accurate and noninvasive tool for preoperative prediction, with substantial clinical potential to provide critical information for individualized treatment planning, thereby enabling more precise and effective management of OC patients.

Differentiation Between Fibro-Adipose Vascular Anomaly and Intramuscular Venous Malformation Using Grey-Scale Ultrasound-Based Radiomics and Machine Learning.

Hu WJ, Wu G, Yuan JJ, Ma BX, Liu YH, Guo XN, Dong CX, Kang H, Yang X, Li JC

pubmed logopapersAug 13 2025
To establish an ultrasound-based radiomics model to differentiate fibro adipose vascular anomaly (FAVA) and intramuscular venous malformation (VM). The clinical data of 65 patients with VM and 31 patients with FAVA who were treated and pathologically confirmed were retrospectively analyzed. Dimensionality reduction was performed on these features using the least absolute shrinkage and selection operator (LASSO). An ultrasound-based radiomics model was established using support vector machine (SVM) and random forest (RF) models. The diagnostic efficiency of this model was evaluated using the receiver operating characteristic. A total of 851 features were obtained by feature extraction, and 311 features were screened out using the <i>t</i>-test and Mann-Whitney <i>U</i> test. The dimensionality reduction was performed on the remaining features using LASSO. Finally, seven features were included to establish the diagnostic prediction model. In the testing group, the AUC, accuracy and specificity of the SVM model were higher than those of the RF model (0.841 [0.815-0.867] vs. 0.791 [0.759-0.824], 96.6% vs. 93.1%, and 100.0% vs. 90.5%, respectively). However, the sensitivity of the SVM model was lower than that of the RF model (88.9% vs. 100.0%). In this study, a prediction model based on ultrasound radiomics was developed to distinguish FAVA from VM. The study achieved high classification accuracy, sensitivity, and specificity. SVM model is superior to RF model and provides a new perspective and tool for clinical diagnosis.

Development of a multimodal vision transformer model for predicting traumatic versus degenerative rotator cuff tears on magnetic resonance imaging: A single-centre retrospective study.

Oettl FC, Malayeri AB, Furrer PR, Wieser K, Fürnstahl P, Bouaicha S

pubmed logopapersAug 13 2025
The differentiation between traumatic and degenerative rotator cuff tears (RCTs remains a diagnostic challenge with significant implications for treatment planning. While magnetic resonance imaging (MRI) is standard practice, traditional radiological interpretation has shown limited reliability in distinguishing these etiologies. This study evaluates the potential of artificial intelligence (AI) models, specifically a multimodal vision transformer (ViT), to differentiate between traumatic and degenerative RCT. In this retrospective, single-centre study, 99 shoulder MRIs were analysed from patients who underwent surgery at a specialised university shoulder unit between 2016 and 2019. The cohort was divided into training (n = 79) and validation (n = 20) sets. The traumatic group required a documented relevant trauma (excluding simple lifting injuries), previously asymptomatic shoulder and MRI within 3 months posttrauma. The degenerative group was of similar age and injured tendon, with patients presenting with at least 1 year of constant shoulder pain prior to imaging and no trauma history. The ViT was subsequently combined with demographic data to finalise in a multimodal ViT. Saliency maps are utilised as an explainability tool. The multimodal ViT model achieved an accuracy of 0.75 ± 0.08 with a recall of 0.8 ± 0.08, specificity of 0.71 ± 0.11 and a F1 score of 0.76 ± 0.1. The model maintained consistent performance across different patient subsets, demonstrating robust generalisation. Saliency maps do not show a consistent focus on the rotator cuff. AI shows potential in supporting the challenging differentiation between traumatic and degenerative RCT on MRI. The achieved accuracy of 75% is particularly significant given the similar groups which presented a challenging diagnostic scenario. Saliency maps were utilised to ensure explainability, the given lack of consistent focus on rotator cuff tendons hints towards underappreciated aspects in the differentiation. Not applicable.

PPEA: Personalized positioning and exposure assistant based on multi-task shared pose estimation transformer.

Zhao J, Liu J, Yang C, Tang H, Chen Y, Zhang Y

pubmed logopapersAug 13 2025
Hand and foot digital radiography (DR) is an indispensable tool in medical imaging, with varying diagnostic requirements necessitating different hand and foot positionings. Accurate positioning is crucial for obtaining diagnostically valuable images. Furthermore, adjusting exposure parameters such as exposure area based on patient conditions helps minimize the likelihood of image retakes. We propose a personalized positioning and exposure assistant capable of automatically recognizing hand and foot positionings and recommending appropriate exposure parameters to achieve these objectives. The assistant comprises three modules: (1) Progressive Iterative Hand-Foot Tracker (PIHFT) to iteratively locate hands or feet in RGB images, providing the foundation for accurate pose estimation; (2) Multi-Task Shared Pose Estimation Transformer (MTSPET), a Transformer-based model that encompasses hand and foot estimation branches with similar network architectures, sharing a common backbone. MTSPET outperformed MediaPipe in the hand pose estimation task and successfully transferred this capability to the foot pose estimation task; (3) Domain Expertise-embedded Positioning and Exposure Assistant (DEPEA), which combines the key-point coordinates of hands and feet with specific positioning and exposure parameter requirements, capable of checking patient positioning and inferring exposure areas and Regions of Interest (ROIs) of Digital Automatic Exposure Control (DAEC). Additionally, two datasets were collected and used to train MTSPET. A preliminary clinical trial showed strong agreement between PPEA's outputs and manual annotations, indicating the system's effectiveness in typical clinical scenarios. The contributions of this study lay the foundation for personalized, patient-specific imaging strategies, ultimately enhancing diagnostic outcomes and minimizing the risk of errors in clinical settings.

AST-n: A Fast Sampling Approach for Low-Dose CT Reconstruction using Diffusion Models

Tomás de la Sotta, José M. Saavedra, Héctor Henríquez, Violeta Chang, Aline Xavier

arxiv logopreprintAug 13 2025
Low-dose CT (LDCT) protocols reduce radiation exposure but increase image noise, compromising diagnostic confidence. Diffusion-based generative models have shown promise for LDCT denoising by learning image priors and performing iterative refinement. In this work, we introduce AST-n, an accelerated inference framework that initiates reverse diffusion from intermediate noise levels, and integrate high-order ODE solvers within conditioned models to further reduce sampling steps. We evaluate two acceleration paradigms--AST-n sampling and standard scheduling with high-order solvers -- on the Low Dose CT Grand Challenge dataset, covering head, abdominal, and chest scans at 10-25 % of standard dose. Conditioned models using only 25 steps (AST-25) achieve peak signal-to-noise ratio (PSNR) above 38 dB and structural similarity index (SSIM) above 0.95, closely matching standard baselines while cutting inference time from ~16 seg to under 1 seg per slice. Unconditional sampling suffers substantial quality loss, underscoring the necessity of conditioning. We also assess DDIM inversion, which yields marginal PSNR gains at the cost of doubling inference time, limiting its clinical practicality. Our results demonstrate that AST-n with high-order samplers enables rapid LDCT reconstruction without significant loss of image fidelity, advancing the feasibility of diffusion-based methods in clinical workflows.

Automated Segmentation of Coronal Brain Tissue Slabs for 3D Neuropathology

Jonathan Williams Ramirez, Dina Zemlyanker, Lucas Deden-Binder, Rogeny Herisse, Erendira Garcia Pallares, Karthik Gopinath, Harshvardhan Gazula, Christopher Mount, Liana N. Kozanno, Michael S. Marshall, Theresa R. Connors, Matthew P. Frosch, Mark Montine, Derek H. Oakley, Christine L. Mac Donald, C. Dirk Keene, Bradley T. Hyman, Juan Eugenio Iglesias

arxiv logopreprintAug 13 2025
Advances in image registration and machine learning have recently enabled volumetric analysis of \emph{postmortem} brain tissue from conventional photographs of coronal slabs, which are routinely collected in brain banks and neuropathology laboratories worldwide. One caveat of this methodology is the requirement of segmentation of the tissue from photographs, which currently requires costly manual intervention. In this article, we present a deep learning model to automate this process. The automatic segmentation tool relies on a U-Net architecture that was trained with a combination of \textit{(i)}1,414 manually segmented images of both fixed and fresh tissue, from specimens with varying diagnoses, photographed at two different sites; and \textit{(ii)}~2,000 synthetic images with randomized contrast and corresponding masks generated from MRI scans for improved generalizability to unseen photographic setups. Automated model predictions on a subset of photographs not seen in training were analyzed to estimate performance compared to manual labels -- including both inter- and intra-rater variability. Our model achieved a median Dice score over 0.98, mean surface distance under 0.4~mm, and 95\% Hausdorff distance under 1.60~mm, which approaches inter-/intra-rater levels. Our tool is publicly available at surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools.

Quest for a clinically relevant medical image segmentation metric: the definition and implementation of Medical Similarity Index

Szuzina Fazekas, Bettina Katalin Budai, Viktor Bérczi, Pál Maurovich-Horvat, Zsolt Vizi

arxiv logopreprintAug 13 2025
Background: In the field of radiology and radiotherapy, accurate delineation of tissues and organs plays a crucial role in both diagnostics and therapeutics. While the gold standard remains expert-driven manual segmentation, many automatic segmentation methods are emerging. The evaluation of these methods primarily relies on traditional metrics that only incorporate geometrical properties and fail to adapt to various applications. Aims: This study aims to develop and implement a clinically relevant segmentation metric that can be adapted for use in various medical imaging applications. Methods: Bidirectional local distance was defined, and the points of the test contour were paired with points of the reference contour. After correcting for the distance between the test and reference center of mass, Euclidean distance was calculated between the paired points, and a score was given to each test point. The overall medical similarity index was calculated as the average score across all the test points. For demonstration, we used myoma and prostate datasets; nnUNet neural networks were trained for segmentation. Results: An easy-to-use, sustainable image processing pipeline was created using Python. The code is available in a public GitHub repository along with Google Colaboratory notebooks. The algorithm can handle multislice images with multiple masks per slice. Mask splitting algorithm is also provided that can separate the concave masks. We demonstrate the adaptability with prostate segmentation evaluation. Conclusions: A novel segmentation evaluation metric was implemented, and an open-access image processing pipeline was also provided, which can be easily used for automatic measurement of clinical relevance of medical image segmentation.}

KonfAI: A Modular and Fully Configurable Framework for Deep Learning in Medical Imaging

Valentin Boussot, Jean-Louis Dillenseger

arxiv logopreprintAug 13 2025
KonfAI is a modular, extensible, and fully configurable deep learning framework specifically designed for medical imaging tasks. It enables users to define complete training, inference, and evaluation workflows through structured YAML configuration files, without modifying the underlying code. This declarative approach enhances reproducibility, transparency, and experimental traceability while reducing development time. Beyond the capabilities of standard pipelines, KonfAI provides native abstractions for advanced strategies including patch-based learning, test-time augmentation, model ensembling, and direct access to intermediate feature representations for deep supervision. It also supports complex multi-model training setups such as generative adversarial architectures. Thanks to its modular and extensible architecture, KonfAI can easily accommodate custom models, loss functions, and data processing components. The framework has been successfully applied to segmentation, registration, and image synthesis tasks, and has contributed to top-ranking results in several international medical imaging challenges. KonfAI is open source and available at \href{https://github.com/vboussot/KonfAI}{https://github.com/vboussot/KonfAI}.

NEURAL: Attention-Guided Pruning for Unified Multimodal Resource-Constrained Clinical Evaluation

Devvrat Joshi, Islem Rekik

arxiv logopreprintAug 13 2025
The rapid growth of multimodal medical imaging data presents significant storage and transmission challenges, particularly in resource-constrained clinical settings. We propose NEURAL, a novel framework that addresses this by using semantics-guided data compression. Our approach repurposes cross-attention scores between the image and its radiological report from a fine-tuned generative vision-language model to structurally prune chest X-rays, preserving only diagnostically critical regions. This process transforms the image into a highly compressed, graph representation. This unified graph-based representation fuses the pruned visual graph with a knowledge graph derived from the clinical report, creating a universal data structure that simplifies downstream modeling. Validated on the MIMIC-CXR and CheXpert Plus dataset for pneumonia detection, NEURAL achieves a 93.4-97.7\% reduction in image data size while maintaining a high diagnostic performance of 0.88-0.95 AUC, outperforming other baseline models that use uncompressed data. By creating a persistent, task-agnostic data asset, NEURAL resolves the trade-off between data size and clinical utility, enabling efficient workflows and teleradiology without sacrificing performance. Our NEURAL code is available at https://github.com/basiralab/NEURAL.

MInDI-3D: Iterative Deep Learning in 3D for Sparse-view Cone Beam Computed Tomography

Daniel Barco, Marc Stadelmann, Martin Oswald, Ivo Herzig, Lukas Lichtensteiger, Pascal Paysan, Igor Peterlik, Michal Walczak, Bjoern Menze, Frank-Peter Schilling

arxiv logopreprintAug 13 2025
We present MInDI-3D (Medical Inversion by Direct Iteration in 3D), the first 3D conditional diffusion-based model for real-world sparse-view Cone Beam Computed Tomography (CBCT) artefact removal, aiming to reduce imaging radiation exposure. A key contribution is extending the "InDI" concept from 2D to a full 3D volumetric approach for medical images, implementing an iterative denoising process that refines the CBCT volume directly from sparse-view input. A further contribution is the generation of a large pseudo-CBCT dataset (16,182) from chest CT volumes of the CT-RATE public dataset to robustly train MInDI-3D. We performed a comprehensive evaluation, including quantitative metrics, scalability analysis, generalisation tests, and a clinical assessment by 11 clinicians. Our results show MInDI-3D's effectiveness, achieving a 12.96 (6.10) dB PSNR gain over uncorrected scans with only 50 projections on the CT-RATE pseudo-CBCT (independent real-world) test set and enabling an 8x reduction in imaging radiation exposure. We demonstrate its scalability by showing that performance improves with more training data. Importantly, MInDI-3D matches the performance of a 3D U-Net on real-world scans from 16 cancer patients across distortion and task-based metrics. It also generalises to new CBCT scanner geometries. Clinicians rated our model as sufficient for patient positioning across all anatomical sites and found it preserved lung tumour boundaries well.
Page 93 of 3513502 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.