Sort by:
Page 92 of 99986 results

Uncertainty Co-estimator for Improving Semi-Supervised Medical Image Segmentation.

Zeng X, Xiong S, Xu J, Du G, Rong Y

pubmed logopapersMay 15 2025
Recently, combining the strategy of consistency regularization with uncertainty estimation has shown promising performance on semi-supervised medical image segmentation tasks. However, most existing methods estimate the uncertainty solely based on the outputs of a single neural network, which results in imprecise uncertainty estimations and eventually degrades the segmentation performance. In this paper, we propose a novel Uncertainty Co-estimator (UnCo) framework to deal with this problem. Inspired by the co-training technique, UnCo establishes two different mean-teacher modules (i.e., two pairs of teacher and student models), and estimates three types of uncertainty from the multi-source predictions generated by these models. Through combining these uncertainties, their differences will help to filter out incorrect noise in each estimate, thus allowing the final fused uncertainty maps to be more accurate. These resulting maps are then used to enhance a cross-consistency regularization imposed between the two modules. In addition, UnCo also designs an internal consistency regularization within each module, so that the student models can aggregate diverse feature information from both modules, thus promoting the semi-supervised segmentation performance. Finally, an adversarial constraint is introduced to maintain the model diversity. Experimental results on four medical image datasets indicate that UnCo can achieve new state-of-the-art performance on both 2D and 3D semi-supervised segmentation tasks. The source code will be available at https://github.com/z1010x/UnCo.

Data-Agnostic Augmentations for Unknown Variations: Out-of-Distribution Generalisation in MRI Segmentation

Puru Vaish, Felix Meister, Tobias Heimann, Christoph Brune, Jelmer M. Wolterink

arxiv logopreprintMay 15 2025
Medical image segmentation models are often trained on curated datasets, leading to performance degradation when deployed in real-world clinical settings due to mismatches between training and test distributions. While data augmentation techniques are widely used to address these challenges, traditional visually consistent augmentation strategies lack the robustness needed for diverse real-world scenarios. In this work, we systematically evaluate alternative augmentation strategies, focusing on MixUp and Auxiliary Fourier Augmentation. These methods mitigate the effects of multiple variations without explicitly targeting specific sources of distribution shifts. We demonstrate how these techniques significantly improve out-of-distribution generalization and robustness to imaging variations across a wide range of transformations in cardiac cine MRI and prostate MRI segmentation. We quantitatively find that these augmentation methods enhance learned feature representations by promoting separability and compactness. Additionally, we highlight how their integration into nnU-Net training pipelines provides an easy-to-implement, effective solution for enhancing the reliability of medical segmentation models in real-world applications.

Modifying the U-Net's Encoder-Decoder Architecture for Segmentation of Tumors in Breast Ultrasound Images.

Derakhshandeh S, Mahloojifar A

pubmed logopapersMay 15 2025
Segmentation is one of the most significant steps in image processing. Segmenting an image is a technique that makes it possible to separate a digital image into various areas based on the different characteristics of pixels in the image. In particular, the segmentation of breast ultrasound images is widely used for cancer identification. As a result of image segmentation, it is possible to make early diagnoses of a diseases via medical images in a very effective way. Due to various ultrasound artifacts and noises, including speckle noise, low signal-to-noise ratio, and intensity heterogeneity, the process of accurately segmenting medical images, such as ultrasound images, is still a challenging task. In this paper, we present a new method to improve the accuracy and effectiveness of breast ultrasound image segmentation. More precisely, we propose a neural network (NN) based on U-Net and an encoder-decoder architecture. By taking U-Net as the basis, both the encoder and decoder parts are developed by combining U-Net with other deep neural networks (Res-Net and MultiResUNet) and introducing a new approach and block (Co-Block), which preserve as much as possible the low-level and the high-level features. The designed network is evaluated using the Breast Ultrasound Images (BUSI) Dataset. It consists of 780 images, and the images are categorized into three classes, which are normal, benign, and malignant. According to our extensive evaluations on a public breast ultrasound dataset, the designed network segments the breast lesions more accurately than other state-of-the-art deep learning methods. With only 8.88 M parameters, our network (CResU-Net) obtained 82.88%, 77.5%, 90.3%, and 98.4% in terms of Dice similarity coefficients (DSC), intersection over union (IoU), area under curve (AUC), and global accuracy (ACC), respectively, on the BUSI dataset.

Automatic head and neck tumor segmentation through deep learning and Bayesian optimization on three-dimensional medical images.

Douglas Z, Rahman A, Duggar WN, Wang H

pubmed logopapersMay 15 2025
Medical imaging constitutes critical information in the diagnostic and prognostic evaluation of patients, as it serves to uncover a broad spectrum of pathologies and deviances. Clinical practitioners who carry out medical image screening are primarily reliant on their knowledge and experience for disease diagnosis. Convolutional Neural Networks (CNNs) hold the potential to serve as a formidable decision-support tool in the realm of medical image analysis due to their high capacity to extract hierarchical features and effectuate direct classification and segmentation from image data. However, CNNs contain a myriad of hyperparameters and optimizing these hyperparameters poses a major obstacle to the effective implementation of CNNs. In this work, a two-phase Bayesian Optimization-derived Scheduling (BOS) approach is proposed for hyperparameter optimization for the head and cancerous tissue segmentation tasks. We proposed this two-phase BOS approach to incorporate both rapid convergences in the first training phase and slower (but without overfitting) improvements in the last training phase. Furthermore, we found that batch size and learning rate have a significant impact on the training process, but optimizing them separately can lead to sub-optimal hyperparameter combinations. Therefore, batch size and learning rate have been coupled as the batch size to learning rate (B2L) ratio and utilized in the optimization process to optimize both simultaneously. The optimized hyperparameters have been tested for a three-dimensional V-Net model with computed tomography (CT) and positron emission tomography (PET) scans to segment and classify cancerous and noncancerous tissues. The results of 10-fold cross-validation indicate that the optimal batch size to learning rate (B2L) ratio for each phase of the training method can improve the overall medical image segmentation performance.

Segmentation of the thoracolumbar fascia in ultrasound imaging: a deep learning approach.

Bonaldi L, Pirri C, Giordani F, Fontanella CG, Stecco C, Uccheddu F

pubmed logopapersMay 15 2025
Only in recent years it has been demonstrated that the thoracolumbar fascia is involved in low back pain (LBP), thus highlighting its implications for treatments. Furthermore, an easily accessible and non-invasive way to investigate the fascia in real time is the ultrasound examination, which to be reliable as is, it must overcome the challenges related to the configuration of the machine and the experience of the operator. Therefore, the lack of a clear understanding of the fascial system combined with the penalty related to the setting of the ultrasound acquisition has generated a gap that makes its effective evaluation difficult during clinical routine. The aim of the present work is to fill this gap by investigating the effectiveness of using a deep learning approach to segment the thoracolumbar fascia from ultrasound imaging. A total of 538 ultrasound images of the thoracolumbar fascia of LBP subjects were finally used to train and test a deep learning network. An additional test set (so-called Test set 2) was collected from another center, operator, machine manufacturer, patient cohort, and protocol to improve the generalizability of the study. A U-Net-based architecture was demonstrated to be able to segment these structures with a final training accuracy of 0.99 and a validation accuracy of 0.91. The accuracy of the prediction computed on a test set (87 images not included in the training set) reached the 0.94, with a mean intersection over union index of 0.82 and a Dice-score of 0.76. These latter metrics were outperformed by those in Test set 2. The validity of the predictions was also verified and confirmed by two expert clinicians. Automatic identification of the thoracolumbar fascia has shown promising results to thoroughly investigate its alteration and target a personalized rehabilitation intervention based on each patient-specific scenario.

Deep learning for cerebral vascular occlusion segmentation: A novel ConvNeXtV2 and GRN-integrated U-Net framework for diffusion-weighted imaging.

Ince S, Kunduracioglu I, Algarni A, Bayram B, Pacal I

pubmed logopapersMay 14 2025
Cerebral vascular occlusion is a serious condition that can lead to stroke and permanent neurological damage due to insufficient oxygen and nutrients reaching brain tissue. Early diagnosis and accurate segmentation are critical for effective treatment planning. Due to its high soft tissue contrast, Magnetic Resonance Imaging (MRI) is commonly used for detecting these occlusions such as ischemic stroke. However, challenges such as low contrast, noise, and heterogeneous lesion structures in MRI images complicate manual segmentation and often lead to misinterpretations. As a result, deep learning-based Computer-Aided Diagnosis (CAD) systems are essential for faster and more accurate diagnosis and treatment methods, although they can sometimes face challenges such as high computational costs and difficulties in segmenting small or irregular lesions. This study proposes a novel U-Net architecture enhanced with ConvNeXtV2 blocks and GRN-based Multi-Layer Perceptrons (MLP) to address these challenges in cerebral vascular occlusion segmentation. This is the first application of ConvNeXtV2 in this domain. The proposed model significantly improves segmentation accuracy, even in low-contrast regions, while maintaining high computational efficiency, which is crucial for real-world clinical applications. To reduce false positives and improve overall accuracy, small lesions (≤5 pixels) were removed in the preprocessing step with the support of expert clinicians. Experimental results on the ISLES 2022 dataset showed superior performance with an Intersection over Union (IoU) of 0.8015 and a Dice coefficient of 0.8894. Comparative analyses indicate that the proposed model achieves higher segmentation accuracy than existing U-Net variants and other methods, offering a promising solution for clinical use.

Automated whole-breast ultrasound tumor diagnosis using attention-inception network.

Zhang J, Huang YS, Wang YW, Xiang H, Lin X, Chang RF

pubmed logopapersMay 14 2025
Automated Whole-Breast Ultrasound (ABUS) has been widely used as an important tool in breast cancer diagnosis due to the ability of this technique to provide complete three-dimensional (3D) images of breasts. To eliminate the risk of misdiagnosis, computer-aided diagnosis (CADx) systems have been proposed to assist radiologists. Convolutional neural networks (CNNs), renowned for the automatic feature extraction capabilities, have developed rapidly in medical image analysis, and this study proposes a CADx system based on 3D CNN for ABUS. This study used a private dataset collected at Sun Yat-Sen University Cancer Center (SYSUCC) from 396 breast tumor patients. First, the tumor volume of interest (VOI) was extracted and resized, and then the tumor was enhanced by histogram equalization. Second, a 3D U-Net++ was employed to segment the tumor mask. Finally, the VOI, the enhanced VOI, and the corresponding tumor mask were fed into a 3D Attention-Inception network to classify the tumor as benign or malignant. The experiment results indicate an accuracy of 89.4%, a sensitivity of 91.2%, a specificity of 87.6%, and an area under the receiver operating characteristic curve (AUC) of 0.9262, which suggests that the proposed CADx system for ABUS images rivals the performance of experienced radiologists in tumor diagnosis tasks. This study proposes a CADx system consisting of a 3D U-Net++ tumor segmentation model and a 3D attention inception neural network tumor classification model for diagnosis in ABUS images. The results indicate that the proposed CADx system is effective and efficient in tumor diagnosis tasks.

An Annotated Multi-Site and Multi-Contrast Magnetic Resonance Imaging Dataset for the study of the Human Tongue Musculature.

Ribeiro FL, Zhu X, Ye X, Tu S, Ngo ST, Henderson RD, Steyn FJ, Kiernan MC, Barth M, Bollmann S, Shaw TB

pubmed logopapersMay 14 2025
This dataset provides the first annotated, openly available MRI-based imaging dataset for investigations of tongue musculature, including multi-contrast and multi-site MRI data from non-disease participants. The present dataset includes 47 participants collated from three studies: BeLong (four participants; T2-weighted images), EATT4MND (19 participants; T2-weighted images), and BMC (24 participants; T1-weighted images). We provide manually corrected segmentations of five key tongue muscles: the superior longitudinal, combined transverse/vertical, genioglossus, and inferior longitudinal muscles. Other phenotypic measures, including age, sex, weight, height, and tongue muscle volume, are also available for use. This dataset will benefit researchers across domains interested in the structure and function of the tongue in health and disease. For instance, researchers can use this data to train new machine learning models for tongue segmentation, which can be leveraged for segmentation and tracking of different tongue muscles engaged in speech formation in health and disease. Altogether, this dataset provides the means to the scientific community for investigation of the intricate tongue musculature and its role in physiological processes and speech production.

[Radiosurgery of benign intracranial lesions. Indications, results , and perspectives].

Danthez N, De Cournuaud C, Pistocchi S, Aureli V, Giammattei L, Hottinger AF, Schiappacasse L

pubmed logopapersMay 14 2025
Stereotactic radiosurgery (SRS) is a non-invasive technique that is transforming the management of benign intracranial lesions through its precision and preservation of healthy tissues. It is effective for meningiomas, trigeminal neuralgia (TN), pituitary adenomas, vestibular schwannomas, and arteriovenous malformations. SRS ensures high tumor control rates, particularly for Grade I meningiomas and vestibular schwannomas. For refractory TN, it provides initial pain relief > 80 %. The advent of technologies such as PET-MRI, hypofractionation, and artificial intelligence is further improving treatment precision, but challenges remain, including the management of late side effects and standardization of practice.

Using Foundation Models as Pseudo-Label Generators for Pre-Clinical 4D Cardiac CT Segmentation

Anne-Marie Rickmann, Stephanie L. Thorn, Shawn S. Ahn, Supum Lee, Selen Uman, Taras Lysyy, Rachel Burns, Nicole Guerrera, Francis G. Spinale, Jason A. Burdick, Albert J. Sinusas, James S. Duncan

arxiv logopreprintMay 14 2025
Cardiac image segmentation is an important step in many cardiac image analysis and modeling tasks such as motion tracking or simulations of cardiac mechanics. While deep learning has greatly advanced segmentation in clinical settings, there is limited work on pre-clinical imaging, notably in porcine models, which are often used due to their anatomical and physiological similarity to humans. However, differences between species create a domain shift that complicates direct model transfer from human to pig data. Recently, foundation models trained on large human datasets have shown promise for robust medical image segmentation; yet their applicability to porcine data remains largely unexplored. In this work, we investigate whether foundation models can generate sufficiently accurate pseudo-labels for pig cardiac CT and propose a simple self-training approach to iteratively refine these labels. Our method requires no manually annotated pig data, relying instead on iterative updates to improve segmentation quality. We demonstrate that this self-training process not only enhances segmentation accuracy but also smooths out temporal inconsistencies across consecutive frames. Although our results are encouraging, there remains room for improvement, for example by incorporating more sophisticated self-training strategies and by exploring additional foundation models and other cardiac imaging technologies.
Page 92 of 99986 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.