Sort by:
Page 81 of 1341332 results

U-Net-based architecture with attention mechanisms and Bayesian Optimization for brain tumor segmentation using MR images.

Ramalakshmi K, Krishna Kumari L

pubmed logopapersJun 30 2025
As technological innovation in computers has advanced, radiologists may now diagnose brain tumors (BT) with the use of artificial intelligence (AI). In the medical field, early disease identification enables further therapies, where the use of AI systems is essential for time and money savings. The difficulties presented by various forms of Magnetic Resonance (MR) imaging for BT detection are frequently not addressed by conventional techniques. To get around frequent problems with traditional tumor detection approaches, deep learning techniques have been expanded. Thus, for BT segmentation utilizing MR images, a U-Net-based architecture combined with Attention Mechanisms has been developed in this work. Moreover, by fine-tuning essential variables, Hyperparameter Optimization (HPO) is used using the Bayesian Optimization Algorithm to strengthen the segmentation model's performance. Tumor regions are pinpointed for segmentation using Region-Adaptive Thresholding technique, and the segmentation results are validated against ground truth annotated images to assess the performance of the suggested model. Experiments are conducted using the LGG, Healthcare, and BraTS 2021 MRI brain tumor datasets. Lastly, the importance of the suggested model has been demonstrated through comparing several metrics, such as IoU, accuracy, and DICE Score, with current state-of-the-art methods. The U-Net-based method gained a higher DICE score of 0.89687 in the segmentation of MRI-BT.

Contrastive Learning with Diffusion Features for Weakly Supervised Medical Image Segmentation

Dewen Zeng, Xinrong Hu, Yu-Jen Chen, Yawen Wu, Xiaowei Xu, Yiyu Shi

arxiv logopreprintJun 30 2025
Weakly supervised semantic segmentation (WSSS) methods using class labels often rely on class activation maps (CAMs) to localize objects. However, traditional CAM-based methods struggle with partial activations and imprecise object boundaries due to optimization discrepancies between classification and segmentation. Recently, the conditional diffusion model (CDM) has been used as an alternative for generating segmentation masks in WSSS, leveraging its strong image generation capabilities tailored to specific class distributions. By modifying or perturbing the condition during diffusion sampling, the related objects can be highlighted in the generated images. Yet, the saliency maps generated by CDMs are prone to noise from background alterations during reverse diffusion. To alleviate the problem, we introduce Contrastive Learning with Diffusion Features (CLDF), a novel method that uses contrastive learning to train a pixel decoder to map the diffusion features from a frozen CDM to a low-dimensional embedding space for segmentation. Specifically, we integrate gradient maps generated from CDM external classifier with CAMs to identify foreground and background pixels with fewer false positives/negatives for contrastive learning, enabling robust pixel embedding learning. Experimental results on four segmentation tasks from two public medical datasets demonstrate that our method significantly outperforms existing baselines.

Diffusion Model-based Data Augmentation Method for Fetal Head Ultrasound Segmentation

Fangyijie Wang, Kevin Whelan, Félix Balado, Guénolé Silvestre, Kathleen M. Curran

arxiv logopreprintJun 30 2025
Medical image data is less accessible than in other domains due to privacy and regulatory constraints. In addition, labeling requires costly, time-intensive manual image annotation by clinical experts. To overcome these challenges, synthetic medical data generation offers a promising solution. Generative AI (GenAI), employing generative deep learning models, has proven effective at producing realistic synthetic images. This study proposes a novel mask-guided GenAI approach using diffusion models to generate synthetic fetal head ultrasound images paired with segmentation masks. These synthetic pairs augment real datasets for supervised fine-tuning of the Segment Anything Model (SAM). Our results show that the synthetic data captures real image features effectively, and this approach reaches state-of-the-art fetal head segmentation, especially when trained with a limited number of real image-mask pairs. In particular, the segmentation reaches Dice Scores of 94.66\% and 94.38\% using a handful of ultrasound images from the Spanish and African cohorts, respectively. Our code, models, and data are available on GitHub.

GUSL: A Novel and Efficient Machine Learning Model for Prostate Segmentation on MRI

Jiaxin Yang, Vasileios Magoulianitis, Catherine Aurelia Christie Alexander, Jintang Xue, Masatomo Kaneko, Giovanni Cacciamani, Andre Abreu, Vinay Duddalwar, C. -C. Jay Kuo, Inderbir S. Gill, Chrysostomos Nikias

arxiv logopreprintJun 30 2025
Prostate and zonal segmentation is a crucial step for clinical diagnosis of prostate cancer (PCa). Computer-aided diagnosis tools for prostate segmentation are based on the deep learning (DL) paradigm. However, deep neural networks are perceived as "black-box" solutions by physicians, thus making them less practical for deployment in the clinical setting. In this paper, we introduce a feed-forward machine learning model, named Green U-shaped Learning (GUSL), suitable for medical image segmentation without backpropagation. GUSL introduces a multi-layer regression scheme for coarse-to-fine segmentation. Its feature extraction is based on a linear model, which enables seamless interpretability during feature extraction. Also, GUSL introduces a mechanism for attention on the prostate boundaries, which is an error-prone region, by employing regression to refine the predictions through residue correction. In addition, a two-step pipeline approach is used to mitigate the class imbalance, an issue inherent in medical imaging problems. After conducting experiments on two publicly available datasets and one private dataset, in both prostate gland and zonal segmentation tasks, GUSL achieves state-of-the-art performance among other DL-based models. Notably, GUSL features a very energy-efficient pipeline, since it has a model size several times smaller and less complexity than the rest of the solutions. In all datasets, GUSL achieved a Dice Similarity Coefficient (DSC) performance greater than $0.9$ for gland segmentation. Considering also its lightweight model size and transparency in feature extraction, it offers a competitive and practical package for medical imaging applications.

Frequency-enhanced Multi-granularity Context Network for Efficient Vertebrae Segmentation

Jian Shi, Tianqi You, Pingping Zhang, Hongli Zhang, Rui Xu, Haojie Li

arxiv logopreprintJun 29 2025
Automated and accurate segmentation of individual vertebra in 3D CT and MRI images is essential for various clinical applications. Due to the limitations of current imaging techniques and the complexity of spinal structures, existing methods still struggle with reducing the impact of image blurring and distinguishing similar vertebrae. To alleviate these issues, we introduce a Frequency-enhanced Multi-granularity Context Network (FMC-Net) to improve the accuracy of vertebrae segmentation. Specifically, we first apply wavelet transform for lossless downsampling to reduce the feature distortion in blurred images. The decomposed high and low-frequency components are then processed separately. For the high-frequency components, we apply a High-frequency Feature Refinement (HFR) to amplify the prominence of key features and filter out noises, restoring fine-grained details in blurred images. For the low-frequency components, we use a Multi-granularity State Space Model (MG-SSM) to aggregate feature representations with different receptive fields, extracting spatially-varying contexts while capturing long-range dependencies with linear complexity. The utilization of multi-granularity contexts is essential for distinguishing similar vertebrae and improving segmentation accuracy. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches on both CT and MRI vertebrae segmentation datasets. The source code is publicly available at https://github.com/anaanaa/FMCNet.

Perivascular Space Burden in Children With Autism Spectrum Disorder Correlates With Neurodevelopmental Severity.

Frigerio G, Rizzato G, Peruzzo D, Ciceri T, Mani E, Lanteri F, Mariani V, Molteni M, Agarwal N

pubmed logopapersJun 29 2025
Cerebral perivascular spaces (PVS) are involved in cerebrospinal fluid (CSF) circulation and clearance of metabolic waste in adult humans. A high number of PVS has been reported in autism spectrum disorder (ASD) but its relationship with CSF and disease severity is unclear. To quantify PVS in children with ASD through MRI. Retrospective. Sixty six children with ASD (mean age: 4.7 ± 1.5 years; males/females: 59/7). 3T, 3D T1-weighted GRE and 3D T2-weighted turbo spin echo sequences. PVS were segmented using a weakly supervised PVS algorithm. PVS count, white matter-perivascular spaces (WM-PVS<sub>tot</sub>) and normalized volume (WM-PVS<sub>voln</sub>) were analyzed in the entire white matter. Six regions: frontal, parietal, limbic, occipital, temporal, and deep WM (WM-PVS<sub>sr</sub>). WM, GM, CSF, and extra-axial CSF (eaCSF) volumes were also calculated. Autism Diagnostic Observation Schedule, Wechsler Intelligence Scale, and Griffiths Mental Developmental scales were used to assess clinical severity and developmental quotient (DQ). Kendall correlation analysis (continuous variables) and Friedman (categorical variables) tests were used to compare medians of PVS variables across different WM regions. Post hoc pairwise comparisons with Wilcoxon tests were used to evaluate distributions of PVS in WM regions. Generalized linear models were employed to assess DQ, clinical severity, age, and eaCSF volume in relation to PVS variables. A p-value < 0.05 indicated statistical significance. Severe DQ (β = 0.0089), mild form of autism (β = -0.0174), and larger eaCSF (β = 0.0082) volume was significantly associated with greater WM-PVS<sub>tot</sub> count. WM-PVS<sub>voln</sub> was predominantly affected by normalized eaCSF volume (eaCSF<sub>voln</sub>) (β = 0.0242; adjusted for WM volumes). The percentage of WM-PVS<sub>sr</sub> was higher in the frontal areas (32%) and was lowest in the temporal regions (11%). PVS count and volume in ASD are associated with eaCSF<sub>voln</sub>. PVS count is related to clinical severity and DQ. PVS count was higher in frontal regions and lower in temporal regions. 4. Stage 3.

Cognition-Eye-Brain Connection in Alzheimer's Disease Spectrum Revealed by Multimodal Imaging.

Shi Y, Shen T, Yan S, Liang J, Wei T, Huang Y, Gao R, Zheng N, Ci R, Zhang M, Tang X, Qin Y, Zhu W

pubmed logopapersJun 29 2025
The connection between cognition, eye, and brain remains inconclusive in Alzheimer's disease (AD) spectrum disorders. To explore the relationship between cognitive function, retinal biometrics, and brain alterations in the AD spectrum. Prospective. Healthy control (HC) (n = 16), subjective cognitive decline (SCD) (n = 35), mild cognitive impairment (MCI) (n = 18), and AD group (n = 7). 3-T, 3D T1-weighted Brain Volume (BRAVO) and resting-state functional MRI (fMRI). In all subgroups, cortical thickness was measured from BRAVO and segmented using the Desikan-Killiany-Tourville (DKT) atlas. The fractional amplitude of low-frequency fluctuations (FALFF) and regional homogeneity (ReHo) were measured in fMRI using voxel-based analysis. The eye was imaged by optical coherence tomography angiography (OCTA), with the deep learning model FARGO segmenting the foveal avascular zone (FAZ) and retinal vessels. FAZ area and perimeter, retinal blood vessels curvature (RBVC), thicknesses of the retinal nerve fiber layer (RNFL) and ganglion cell layer-inner plexiform layer (GCL-IPL) were calculated. Cognition-eye-brain associations were compared across the HC group and each AD spectrum stage using multivariable linear regression. Multivariable linear regression analysis. Statistical significance was set at p < 0.05 with FWE correction for fMRI and p < 1/62 (Bonferroni-corrected) for structural analyses. Reductions of FALFF in temporal regions, especially the left superior temporal gyrus (STG) in MCI patients, were linked to decreased RNFL thickness and increased FAZ area significantly. In AD patients, reduced ReHo values in occipital regions, especially the right middle occipital gyrus (MOG), were significantly associated with an enlarged FAZ area. The SCD group showed widespread cortical thickening significantly associated with all aforementioned retinal biometrics, with notable thickening in the right fusiform gyrus (FG) and right parahippocampal gyrus (PHG) correlating with reduced GCL-IPL thickness. Brain function and structure may be associated with cognition and retinal biometrics across the AD spectrum. Specifically, cognition-eye-brain connections may be present in SCD. 2. 3.

CA-Diff: Collaborative Anatomy Diffusion for Brain Tissue Segmentation

Qilong Xing, Zikai Song, Yuteng Ye, Yuke Chen, Youjia Zhang, Na Feng, Junqing Yu, Wei Yang

arxiv logopreprintJun 28 2025
Segmentation of brain structures from MRI is crucial for evaluating brain morphology, yet existing CNN and transformer-based methods struggle to delineate complex structures accurately. While current diffusion models have shown promise in image segmentation, they are inadequate when applied directly to brain MRI due to neglecting anatomical information. To address this, we propose Collaborative Anatomy Diffusion (CA-Diff), a framework integrating spatial anatomical features to enhance segmentation accuracy of the diffusion model. Specifically, we introduce distance field as an auxiliary anatomical condition to provide global spatial context, alongside a collaborative diffusion process to model its joint distribution with anatomical structures, enabling effective utilization of anatomical features for segmentation. Furthermore, we introduce a consistency loss to refine relationships between the distance field and anatomical structures and design a time adapted channel attention module to enhance the U-Net feature fusion procedure. Extensive experiments show that CA-Diff outperforms state-of-the-art (SOTA) methods.

Revealing the Infiltration: Prognostic Value of Automated Segmentation of Non-Contrast-Enhancing Tumor in Glioblastoma

Gomez-Mahiques, M., Lopez-Mateu, C., Gil-Terron, F. J., Montosa-i-Mico, V., Svensson, S. F., Mendoza Mireles, E. E., Vik-Mo, E. O., Emblem, K., Balana, C., Puig, J., Garcia-Gomez, J. M., Fuster-Garcia, E.

medrxiv logopreprintJun 28 2025
BackgroundPrecise delineation of non-contrast-enhancing tumor (nCET) in glioblastoma (GB) is critical for maximal safe resection, yet routine imaging cannot reliably separate infiltrative tumor from vasogenic edema. The aim of this study was to develop and validate an automated method to identify nCET and assess its prognostic value. MethodsPre-operative T2-weighted and FLAIR MRI from 940 patients with newly diagnosed GB in four multicenter cohorts were analyzed. A deep-learning model segmented enhancing tumor, edema and necrosis; a non-local spatially varying finite mixture model then isolated edema subregions containing nCET. The ratio of nCET to total edema volume--the Diffuse Infiltration Index (DII)--was calculated. Associations between DII and overall survival (OS) were examined with Kaplan-Meier curves and multivariable Cox regression. ResultsThe algorithm distinguished nCET from vasogenic edema in 97.5 % of patients, showing a mean signal-intensity gap > 5 %. Higher DII is able to stratify patients with shorter OS. In the NCT03439332 cohort, DII above the optimal threshold doubled the hazard of death (hazard ratio 2.09, 95 % confidence interval 1.34-3.25; p = 0.0012) and reduced median survival by 122 days. Significant, though smaller, effects were confirmed in GLIOCAT & BraTS (hazard ratio 1.31; p = 0.022), OUS (hazard ratio 1.28; p = 0.007) and in pooled analysis (hazard ratio 1.28; p = 0.0003). DII remained an independent predictor after adjustment for age, extent of resection and MGMT methylation. ConclusionsWe present a reproducible, server-hosted tool for automated nCET delineation and DII biomarker extraction that enables robust, independent prognostic stratification. It promises to guide supramaximal surgical planning and personalized neuro-oncology research and care. Key Points- KP1: Robust automated MRI tool segments non-contrast-enhancing (nCET) glioblastoma. - KP2: Introduced and validated the Diffuse Infiltration Index with prognostic value. - KP3: nCET mapping enables RANO supramaximal resection for personalized surgery. Importance of the StudyThis study underscores the clinical importance of accurately delineating non-contrast-enhancing tumor (nCET) regions in glioblastoma (GB) using standard MRI. Despite their lack of contrast enhancement, nCET areas often harbor infiltrative tumor cells critical for disease progression and recurrence. By integrating deep learning segmentation with a non-local finite mixture model, we developed a reproducible, automated methodology for nCET delineation and introduced the Diffuse Infiltration Index (DII), a novel imaging biomarker. Higher DII values were independently associated with reduced overall survival across large, heterogeneous cohorts. These findings highlight the prognostic relevance of imaging-defined infiltration patterns and support the use of nCET segmentation in clinical decision-making. Importantly, this methodology aligns with and operationalizes recent RANO criteria on supramaximal resection, offering a practical, image-based tool to improve surgical planning. In doing so, our work advances efforts toward more personalized neuro-oncological care, potentially improving outcomes while minimizing functional compromise.

AI-Derived Splenic Response in Cardiac PET Predicts Mortality: A Multi-Site Study

Dharmavaram, N., Ramirez, G., Shanbhag, A., Miller, R. J. H., Kavanagh, P., Yi, J., Lemley, M., Builoff, V., Marcinkiewicz, A. M., Dey, D., Hainer, J., Wopperer, S., Knight, S., Le, V. T., Mason, S., Alexanderson, E., Carvajal-Juarez, I., Packard, R. R. S., Rosamond, T. L., Al-Mallah, M. H., Slipczuk, L., Travin, M., Acampa, W., Einstein, A., Chareonthaitawee, P., Berman, D., Di Carli, M., Slomka, P.

medrxiv logopreprintJun 28 2025
BackgroundInadequate pharmacologic stress may limit the diagnostic and prognostic accuracy of myocardial perfusion imaging (MPI). The splenic ratio (SR), a measure of stress adequacy, has emerged as a potential imaging biomarker. ObjectivesTo evaluate the prognostic value of artificial intelligence (AI)-derived SR in a large multicenter 82Rb-PET cohort undergoing regadenoson stress testing. MethodsWe retrospectively analyzed 10,913 patients from three sites in the REFINE PET registry with clinically indicated MPI and linked clinical outcomes. SR was calculated using fully automated algorithms as the ratio of splenic uptake at stress versus rest. Patients were stratified by SR into high ([&ge;]90th percentile) and low (<90th percentile) groups. The primary outcome was major adverse cardiovascular events (MACE). Survival analysis was conducted using Kaplan-Meier and Cox proportional hazards models adjusted for clinical and imaging covariates, including myocardial flow reserve (MFR [&ge;]2 vs. <2). ResultsThe cohort had a median age of 68 years, with 57% male patients. Common risk factors included hypertension (84%), dyslipidemia (76%), diabetes (33%), and prior coronary artery disease (31%). Median follow-up was 4.6 years. Patients with high SR (n=1,091) had an increased risk of MACE (HR 1.18, 95% CI 1.06-1.31, p=0.002). Among patients with preserved MFR ([&ge;]2; n=7,310), high SR remained independently associated with MACE (HR 1.44, 95% CI 1.24-1.67, p<0.0001). ConclusionsElevated AI-derived SR was independently associated with adverse cardiovascular outcomes, including among patients with preserved MFR. These findings support SR as a novel, automated imaging biomarker for risk stratification in 82Rb PET MPI. Condensed AbstractAI-derived splenic ratio (SR), a marker of pharmacologic stress adequacy, was independently associated with increased cardiovascular risk in a large 82Rb PET cohort, even among patients with preserved myocardial flow reserve (MFR). High SR identified individuals with elevated MACE risk despite normal perfusion and flow findings, suggesting unrecognized physiologic vulnerability. Incorporating automated SR into PET MPI interpretation may enhance risk stratification and identify patients who could benefit from intensified preventive care, particularly when traditional imaging markers appear reassuring. These findings support SR as a clinically meaningful, easily integrated biomarker in stress PET imaging.
Page 81 of 1341332 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.