Sort by:
Page 80 of 91901 results

Interpretable Machine Learning Models for Differentiating Glioblastoma From Solitary Brain Metastasis Using Radiomics.

Xia X, Wu W, Tan Q, Gou Q

pubmed logopapersMay 27 2025
To develop and validate interpretable machine learning models for differentiating glioblastoma (GB) from solitary brain metastasis (SBM) using radiomics features from contrast-enhanced T1-weighted MRI (CE-T1WI), and to compare the impact of low-order and high-order features on model performance. A cohort of 434 patients with histopathologically confirmed GB (226 patients) and SBM (208 patients) was retrospectively analyzed. Radiomic features were derived from CE-T1WI, with feature selection conducted through minimum redundancy maximum relevance and least absolute shrinkage and selection operator regression. Machine learning models, including GradientBoost and lightGBM (LGBM), were trained using low-order and high-order features. The performance of the models was assessed through receiver operating characteristic analysis and computation of the area under the curve, along with other indicators, including accuracy, specificity, and sensitivity. SHapley Additive Explanations (SHAP) analysis is used to measure the influence of each feature on the model's predictions. The performances of various machine learning models on both the training and validation datasets were notably different. For the training group, the LGBM, CatBoost, multilayer perceptron (MLP), and GradientBoost models achieved the highest AUC scores, all exceeding 0.9, demonstrating strong discriminative power. The LGBM model exhibited the best stability, with a minimal AUC difference of only 0.005 between the training and test sets, suggesting strong generalizability. Among the validation group results, the GradientBoost classifier achieved the maximum AUC of 0.927, closely followed by random forest at 0.925. GradientBoost also demonstrated high sensitivity (0.911) and negative predictive value (NPV, 0.889), effectively identifying true positives. The LGBM model showed the highest test accuracy (86.2%) and performed excellently in terms of sensitivity (0.911), NPV (0.895), and positive predictive value (PPV, 0.837). The models utilizing high-order features outperformed those based on low-order features in all the metrics. SHAP analysis further enhances model interpretability, providing insights into feature importance and contributions to classification decisions. Machine learning techniques based on radiomics can effectively distinguish GB from SBM, with gradient boosting tree-based models such as LGBMs demonstrating superior performance. High-order features significantly improve model accuracy and robustness. SHAP technology enhances the interpretability and transparency of models for distinguishing brain tumors, providing intuitive visualization of the contribution of radiomic features to classification.

Development of a No-Reference CT Image Quality Assessment Method Using RadImageNet Pre-trained Deep Learning Models.

Ohashi K, Nagatani Y, Yamazaki A, Yoshigoe M, Iwai K, Uemura R, Shimomura M, Tanimura K, Ishida T

pubmed logopapersMay 27 2025
Accurate assessment of computed tomography (CT) image quality is crucial for ensuring diagnostic accuracy, optimizing imaging protocols, and preventing excessive radiation exposure. In clinical settings, where high-quality reference images are often unavailable, developing no-reference image quality assessment (NR-IQA) methods is essential. Recently, CT-NR-IQA methods using deep learning have been widely studied; however, significant challenges remain in handling multiple degradation factors and accurately reflecting real-world degradations. To address these issues, we propose a novel CT-NR-IQA method. Our approach utilizes a dataset that combines two degradation factors (noise and blur) to train convolutional neural network (CNN) models capable of handling multiple degradation factors. Additionally, we leveraged RadImageNet pre-trained models (ResNet50, DenseNet121, InceptionV3, and InceptionResNetV2), allowing the models to learn deep features from large-scale real clinical images, thus enhancing adaptability to real-world degradations without relying on artificially degraded images. The models' performances were evaluated by measuring the correlation between the subjective scores and predicted image quality scores for both artificially degraded and real clinical image datasets. The results demonstrated positive correlations between the subjective and predicted scores for both datasets. In particular, ResNet50 showed the best performance, with a correlation coefficient of 0.910 for the artificially degraded images and 0.831 for the real clinical images. These findings indicate that the proposed method could serve as a potential surrogate for subjective assessment in CT-NR-IQA.

An orchestration learning framework for ultrasound imaging: Prompt-Guided Hyper-Perception and Attention-Matching Downstream Synchronization.

Lin Z, Li S, Wang S, Gao Z, Sun Y, Lam CT, Hu X, Yang X, Ni D, Tan T

pubmed logopapersMay 27 2025
Ultrasound imaging is pivotal in clinical diagnostics due to its affordability, portability, safety, real-time capability, and non-invasive nature. It is widely utilized for examining various organs, such as the breast, thyroid, ovary, cardiac, and more. However, the manual interpretation and annotation of ultrasound images are time-consuming and prone to variability among physicians. While single-task artificial intelligence (AI) solutions have been explored, they are not ideal for scaling AI applications in medical imaging. Foundation models, although a trending solution, often struggle with real-world medical datasets due to factors such as noise, variability, and the incapability of flexibly aligning prior knowledge with task adaptation. To address these limitations, we propose an orchestration learning framework named PerceptGuide for general-purpose ultrasound classification and segmentation. Our framework incorporates a novel orchestration mechanism based on prompted hyper-perception, which adapts to the diverse inductive biases required by different ultrasound datasets. Unlike self-supervised pre-trained models, which require extensive fine-tuning, our approach leverages supervised pre-training to directly capture task-relevant features, providing a stronger foundation for multi-task and multi-organ ultrasound imaging. To support this research, we compiled a large-scale Multi-task, Multi-organ public ultrasound dataset (M<sup>2</sup>-US), featuring images from 9 organs and 16 datasets, encompassing both classification and segmentation tasks. Our approach employs four specific prompts-Object, Task, Input, and Position-to guide the model, ensuring task-specific adaptability. Additionally, a downstream synchronization training stage is introduced to fine-tune the model for new data, significantly improving generalization capabilities and enabling real-world applications. Experimental results demonstrate the robustness and versatility of our framework in handling multi-task and multi-organ ultrasound image processing, outperforming both specialist models and existing general AI solutions. Compared to specialist models, our method improves segmentation from 82.26% to 86.45%, classification from 71.30% to 79.08%, while also significantly reducing model parameters.

Advancements in Medical Image Classification through Fine-Tuning Natural Domain Foundation Models

Mobina Mansoori, Sajjad Shahabodini, Farnoush Bayatmakou, Jamshid Abouei, Konstantinos N. Plataniotis, Arash Mohammadi

arxiv logopreprintMay 26 2025
Using massive datasets, foundation models are large-scale, pre-trained models that perform a wide range of tasks. These models have shown consistently improved results with the introduction of new methods. It is crucial to analyze how these trends impact the medical field and determine whether these advancements can drive meaningful change. This study investigates the application of recent state-of-the-art foundation models, DINOv2, MAE, VMamba, CoCa, SAM2, and AIMv2, for medical image classification. We explore their effectiveness on datasets including CBIS-DDSM for mammography, ISIC2019 for skin lesions, APTOS2019 for diabetic retinopathy, and CHEXPERT for chest radiographs. By fine-tuning these models and evaluating their configurations, we aim to understand the potential of these advancements in medical image classification. The results indicate that these advanced models significantly enhance classification outcomes, demonstrating robust performance despite limited labeled data. Based on our results, AIMv2, DINOv2, and SAM2 models outperformed others, demonstrating that progress in natural domain training has positively impacted the medical domain and improved classification outcomes. Our code is publicly available at: https://github.com/sajjad-sh33/Medical-Transfer-Learning.

Evolution of deep learning tooth segmentation from CT/CBCT images: a systematic review and meta-analysis.

Kot WY, Au Yeung SY, Leung YY, Leung PH, Yang WF

pubmed logopapersMay 26 2025
Deep learning has been utilized to segment teeth from computed tomography (CT) or cone-beam CT (CBCT). However, the performance of deep learning is unknown due to multiple models and diverse evaluation metrics. This systematic review and meta-analysis aims to evaluate the evolution and performance of deep learning in tooth segmentation. We systematically searched PubMed, Web of Science, Scopus, IEEE Xplore, arXiv.org, and ACM for studies investigating deep learning in human tooth segmentation from CT/CBCT. Included studies were assessed using the Quality Assessment of Diagnostic Accuracy Study (QUADAS-2) tool. Data were extracted for meta-analyses by random-effects models. A total of 30 studies were included in the systematic review, and 28 of them were included for meta-analyses. Various deep learning algorithms were categorized according to the backbone network, encompassing single-stage convolutional models, convolutional models with U-Net architecture, Transformer models, convolutional models with attention mechanisms, and combinations of multiple models. Convolutional models with U-Net architecture were the most commonly used deep learning algorithms. The integration of attention mechanism within convolutional models has become a new topic. 29 evaluation metrics were identified, with Dice Similarity Coefficient (DSC) being the most popular. The pooled results were 0.93 [0.93, 0.93] for DSC, 0.86 [0.85, 0.87] for Intersection over Union (IoU), 0.22 [0.19, 0.24] for Average Symmetric Surface Distance (ASSD), 0.92 [0.90, 0.94] for sensitivity, 0.71 [0.26, 1.17] for 95% Hausdorff distance, and 0.96 [0.93, 0.98] for precision. No significant difference was observed in the segmentation of single-rooted or multi-rooted teeth. No obvious correlation between sample size and segmentation performance was observed. Multiple deep learning algorithms have been successfully applied to tooth segmentation from CT/CBCT and their evolution has been well summarized and categorized according to their backbone structures. In future, studies are needed with standardized protocols and open labelled datasets.

Diffusion based multi-domain neuroimaging harmonization method with preservation of anatomical details.

Lan H, Varghese BA, Sheikh-Bahaei N, Sepehrband F, Toga AW, Choupan J

pubmed logopapersMay 26 2025
In multi-center neuroimaging studies, the technical variability caused by the batch differences could hinder the ability to aggregate data across sites, and negatively impact the reliability of study-level results. Recent efforts in neuroimaging harmonization have aimed to minimize these technical gaps and reduce technical variability across batches. While Generative Adversarial Networks (GAN) has been a prominent method for addressing harmonization tasks, GAN-harmonized images suffer from artifacts or anatomical distortions. Given the advancements of denoising diffusion probabilistic model which produces high-fidelity images, we have assessed the efficacy of the diffusion model for neuroimaging harmonization. While GAN-based methods intrinsically transform imaging styles between two domains per model, we have demonstrated the diffusion model's superior capability in harmonizing images across multiple domains with single model. Our experiments highlight that the learned domain invariant anatomical condition reinforces the model to accurately preserve the anatomical details while differentiating batch differences at each diffusion step. Our proposed method has been tested using T1-weighted MRI images from two public neuroimaging datasets of ADNI1 and ABIDE II, yielding harmonization results with consistent anatomy preservation and superior FID score compared to the GAN-based methods. We have conducted multiple analyses including extensive quantitative and qualitative evaluations against the baseline models, ablation study showcasing the benefits of the learned domain invariant conditions, and improvements in the consistency of perivascular spaces segmentation analysis and volumetric analysis through harmonization.

Advancing Limited-Angle CT Reconstruction Through Diffusion-Based Sinogram Completion

Jiaqi Guo, Santiago Lopez-Tapia, Aggelos K. Katsaggelos

arxiv logopreprintMay 26 2025
Limited Angle Computed Tomography (LACT) often faces significant challenges due to missing angular information. Unlike previous methods that operate in the image domain, we propose a new method that focuses on sinogram inpainting. We leverage MR-SDEs, a variant of diffusion models that characterize the diffusion process with mean-reverting stochastic differential equations, to fill in missing angular data at the projection level. Furthermore, by combining distillation with constraining the output of the model using the pseudo-inverse of the inpainting matrix, the diffusion process is accelerated and done in a step, enabling efficient and accurate sinogram completion. A subsequent post-processing module back-projects the inpainted sinogram into the image domain and further refines the reconstruction, effectively suppressing artifacts while preserving critical structural details. Quantitative experimental results demonstrate that the proposed method achieves state-of-the-art performance in both perceptual and fidelity quality, offering a promising solution for LACT reconstruction in scientific and clinical applications.

Deep learning radiomics of left atrial appendage features for predicting atrial fibrillation recurrence.

Yin Y, Jia S, Zheng J, Wang W, Wang Z, Lin J, Lin W, Feng C, Xia S, Ge W

pubmed logopapersMay 26 2025
Structural remodeling of the left atrial appendage (LAA) is characteristic of atrial fibrillation (AF), and LAA morphology impacts radiofrequency catheter ablation (RFCA) outcomes. In this study, we aimed to develop and validate a predictive model for AF ablation outcomes using LAA morphological features, deep learning (DL) radiomics, and clinical variables. In this multicenter retrospective study, 480 consecutive patients who underwent RFCA for AF at three tertiary hospitals between January 2016 and December 2022 were analyzed, with follow-up through December 2023. Preprocedural CT angiography (CTA) images and laboratory data were systematically collected. LAA segmentation was performed using an nnUNet-based model, followed by radiomic feature extraction. Cox proportional hazard regression analysis assessed the relationship between AF recurrence and LAA volume. The dataset was randomly split into training (70%) and validation (30%) cohorts using stratified sampling. An AF recurrence prediction model integrating LAA DL radiomics with clinical variables was developed. The cohort had a median follow-up of 22 months (IQR 15-32), with 103 patients (21.5%) experiencing AF recurrence. The nnUNet segmentation model achieved a Dice coefficient of 0.89. Multivariate analysis showed that LAA volume was associated with a 5.8% increase in hazard risk per unit increase (aHR 1.058, 95% CI 1.021-1.095; p = 0.002). The model combining LAA DL radiomics with clinical variables demonstrated an AUC of 0.92 (95% CI 0.87-0.96) in the test set, maintaining robust predictive performance across subgroups. LAA morphology and volume are strongly linked to AF RFCA outcomes. We developed an LAA segmentation network and a predictive model that combines DL radiomics and clinical variables to estimate the probability of AF recurrence.

The extent of Skeletal muscle wasting in prolonged critical illness and its association with survival: insights from a retrospective single-center study.

Kolck J, Hosse C, Fehrenbach U, Beetz NL, Auer TA, Pille C, Geisel D

pubmed logopapersMay 26 2025
Muscle wasting in critically ill patients, particularly those with prolonged hospitalization, poses a significant challenge to recovery and long-term outcomes. The aim of this study was to characterize long-term muscle wasting trajectories in ICU patients with acute respiratory distress syndrome (ARDS) due to COVID-19 and acute pancreatitis (AP), to evaluate correlations between muscle wasting and patient outcomes, and to identify clinically feasible thresholds that have the potential to enhance patient care strategies. A collective of 154 ICU patients (100 AP and 54 COVID-19 ARDS) with a minimum ICU stay of 10 days and at least three abdominal CT scans were retrospectively analyzed. AI-driven segmentation of CT scans quantified changes in psoas muscle area (PMA). A mixed model analysis was used to assess the correlation between mortality and muscle wasting, Cox regression was applied to identify potential predictors of survival. Muscle loss rates, survival thresholds and outcome correlations were assessed using Kaplan-Meier and receiver operating characteristic (ROC) analyses. Muscle loss in ICU patients was most pronounced in the first two weeks, peaking at -2.42% and - 2.39% psoas muscle area (PMA) loss per day in weeks 1 and 2, respectively, followed by a progressive decline. The median total PMA loss was 48.3%, with significantly greater losses in non-survivors. Mixed model analysis confirmed correlation of muscle wasting with mortality. Cox regression identified visceral adipose tissue (VAT), sequential organ failure assessment (SOFA) score and muscle wasting as significant risk factors, while increased skeletal muscle area (SMA) was protective. ROC and Kaplan-Meier analyses showed strong correlations between PMA loss thresholds and survival, with daily loss > 4% predicting the worst survival (39.7%). To our knowledge, This is the first study to highlight the substantial progression of muscle wasting in prolonged hospitalized ICU patients. The mortality-related thresholds for muscle wasting rates identified in this study may provide a basis for clinical risk stratification. Future research should validate these findings in larger cohorts and explore strategies to mitigate muscle loss. Not applicable.

Deep learning model for malignancy prediction of TI-RADS 4 thyroid nodules with high-risk characteristics using multimodal ultrasound: A multicentre study.

Chu X, Wang T, Chen M, Li J, Wang L, Wang C, Wang H, Wong ST, Chen Y, Li H

pubmed logopapersMay 26 2025
The automatic screening of thyroid nodules using computer-aided diagnosis holds great promise in reducing missed and misdiagnosed cases in clinical practice. However, most current research focuses on single-modal images and does not fully leverage the comprehensive information from multimodal medical images, limiting model performance. To enhance screening accuracy, this study uses a deep learning framework that integrates high-dimensional convolutions of B-mode ultrasound (BMUS) and strain elastography (SE) images to predict the malignancy of TI-RADS 4 thyroid nodules with high-risk features. First, we extract nodule regions from the images and expand the boundary areas. Then, adaptive particle swarm optimization (APSO) and contrast limited adaptive histogram equalization (CLAHE) algorithms are applied to enhance ultrasound image contrast. Finally, deep learning techniques are used to extract and fuse high-dimensional features from both ultrasound modalities to classify benign and malignant thyroid nodules. The proposed model achieved an AUC of 0.937 (95 % CI 0.917-0.949) and 0.927 (95 % CI 0.907-0.948) in the test and external validation sets, respectively, demonstrating strong generalization ability. When compared with the diagnostic performance of three groups of radiologists, the model outperformed them significantly. Meanwhile, with the model's assistance, all three radiologist groups showed improved diagnostic performance. Furthermore, heatmaps generated by the model show a high alignment with radiologists' expertise, further confirming its credibility. The results indicate that our model can assist in clinical thyroid nodule diagnosis, reducing the risk of missed and misdiagnosed diagnoses, particularly for high-risk populations, and holds significant clinical value.
Page 80 of 91901 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.