Sort by:
Page 8 of 33329 results

AI-based diagnosis of acute aortic syndrome from noncontrast CT.

Hu Y, Xiang Y, Zhou YJ, He Y, Lang D, Yang S, Du X, Den C, Xu Y, Wang G, Ding Z, Huang J, Zhao W, Wu X, Li D, Zhu Q, Li Z, Qiu C, Wu Z, He Y, Tian C, Qiu Y, Lin Z, Zhang X, Hu L, He Y, Yuan Z, Zhou X, Fan R, Chen R, Guo W, Xu J, Zhang J, Mok TCW, Li Z, Kalra MK, Lu L, Xiao W, Li X, Bian Y, Shao C, Wang G, Lu W, Huang Z, Xu M, Zhang H

pubmed logopapersAug 20 2025
The accurate and timely diagnosis of acute aortic syndrome (AAS) in patients presenting with acute chest pain remains a clinical challenge. Aortic computed tomography (CT) angiography is the imaging protocol of choice in patients with suspected AAS. However, due to economic and workflow constraints in China, the majority of suspected patients initially undergo noncontrast CT as the initial imaging testing, and CT angiography is reserved for those at higher risk. Although noncontrast CT can reveal specific signs indicative of AAS, its diagnostic efficacy when used alone has not been well characterized. Here we present an artificial intelligence-based warning system, iAorta, using noncontrast CT for AAS identification in China, which demonstrates remarkably high accuracy and provides clinicians with interpretable warnings. iAorta was evaluated through a comprehensive step-wise study. In the multicenter retrospective study (n = 20,750), iAorta achieved a mean area under the receiver operating curve of 0.958 (95% confidence interval 0.950-0.967). In the large-scale real-world study (n = 137,525), iAorta demonstrated consistently high performance across various noncontrast CT protocols, achieving a sensitivity of 0.913-0.942 and a specificity of 0.991-0.993. In the prospective comparative study (n = 13,846), iAorta demonstrated the capability to significantly shorten the time to correct diagnostic pathway for patients with initial false suspicion from an average of 219.7 (115-325) min to 61.6 (43-89) min. Furthermore, for the prospective pilot deployment that we conducted, iAorta correctly identified 21 out of 22 patients with AAS among 15,584 consecutive patients presenting with acute chest pain and under noncontrast CT protocol in the emergency department. For these 21 AAS-positive patients, the average time to diagnosis was 102.1 (75-133) min. Finally, iAorta may help prevent delayed or missed diagnoses of AAS in settings where noncontrast CT remains the only feasible initial imaging modality-such as in resource-limited regions or in patients who cannot receive, or did not receive, intravenous contrast.

Automated surgical planning with nnU-Net: delineation of the anatomy in hepatobiliary phase MRI

Karin A. Olthof, Matteo Fusagli, Bianca Güttner, Tiziano Natali, Bram Westerink, Stefanie Speidel, Theo J. M. Ruers, Koert F. D. Kuhlmann, Andrey Zhylka

arxiv logopreprintAug 19 2025
Background: The aim of this study was to develop and evaluate a deep learning-based automated segmentation method for hepatic anatomy (i.e., parenchyma, tumors, portal vein, hepatic vein and biliary tree) from the hepatobiliary phase of gadoxetic acid-enhanced MRI. This method should ease the clinical workflow of preoperative planning. Methods: Manual segmentation was performed on hepatobiliary phase MRI scans from 90 consecutive patients who underwent liver surgery between January 2020 and October 2023. A deep learning network (nnU-Net v1) was trained on 72 patients with an extra focus on thin structures and topography preservation. Performance was evaluated on an 18-patient test set by comparing automated and manual segmentations using Dice similarity coefficient (DSC). Following clinical integration, 10 segmentations (assessment dataset) were generated using the network and manually refined for clinical use to quantify required adjustments using DSC. Results: In the test set, DSCs were 0.97+/-0.01 for liver parenchyma, 0.80+/-0.04 for hepatic vein, 0.79+/-0.07 for biliary tree, 0.77+/-0.17 for tumors, and 0.74+/-0.06 for portal vein. Average tumor detection rate was 76.6+/-24.1%, with a median of one false-positive per patient. The assessment dataset showed minor adjustments were required for clinical use of the 3D models, with high DSCs for parenchyma (1.00+/-0.00), portal vein (0.98+/-0.01) and hepatic vein (0.95+/-0.07). Tumor segmentation exhibited greater variability (DSC 0.80+/-0.27). During prospective clinical use, the model detected three additional tumors initially missed by radiologists. Conclusions: The proposed nnU-Net-based segmentation method enables accurate and automated delineation of hepatic anatomy. This enables 3D planning to be applied efficiently as a standard-of-care for every patient undergoing liver surgery.

CT-based auto-segmentation of multiple target volumes for all-in-one radiotherapy in rectal cancer patients.

Li X, Wang L, Yang M, Li X, Zhao T, Wang M, Lu S, Ji Y, Zhang W, Jia L, Peng R, Wang J, Wang H

pubmed logopapersAug 19 2025
This study aimed to evaluate the clinical feasibility and performance of CT-based auto-segmentation models integrated into an All-in-One radiotherapy workflow for rectal cancer. This study included 312 rectal cancer patients, with 272 used to train three nnU-Net models for CTV45, CTV50, and GTV segmentation, and 40 for evaluation across one internal (<i>n</i> = 10), one clinical AIO (<i>n</i> = 10), and two external cohorts (<i>n</i> = 10 each). Segmentation accuracy (DSC, HD, HD95, ASSD, ASD) and time efficiency were assessed. In the internal testing set, mean DSC of CTV45, CTV50, and GTV were 0.90, 0.86, and 0.71; HD were 17.08, 25.48, and 79.59 mm; HD 95 were 4.89, 7.33, and 56.49 mm; ASSD were 1.23, 1.90, and 6.69 mm; and ASD were 1.24, 1.58, and 11.61 mm. Auto-segmentation reduced manual delineation time by 63.3–88.3% (<i>p</i> < 0.0001). In clinical practice, average DSC of CTV45, CTV50 and GTV were 0.93, 0.88, and 0.78; HD were 13.56, 23.84, and 35.38 mm; HD 95 were 3.33, 6.46, and 21.34 mm; ASSD were 0.78, 1.49, and 3.30 mm; and ASD were 0.74, 1.18, and 2.13 mm. The results from the multi-center testing also showed applicability of these models, since the average DSC of CTV45 and GTV were 0.84 and 0.80 respectively. The models demonstrated high accuracy and clinical utility, effectively streamlining target volume delineation and reducing manual workload in routine practice. The study protocol was approved by the Institutional Review Board of Peking University Third Hospital (Approval No. (2024) Medical Ethics Review No. 182-01).

Application of deep learning reconstruction at prone position chest scanning of early interstitial lung disease.

Zhao R, Wang Y, Wang J, Wang Z, Xiao R, Ming Y, Piao S, Wang J, Song L, Xu Y, Ma Z, Fan P, Sui X, Song W

pubmed logopapersAug 19 2025
Timely intervention of interstitial lung disease (ILD) was promising for attenuating the lung function decline and improving clinical outcomes. The prone position HRCT is essential for early diagnosis of ILD, but limited by its high radiation exposure. This study was aimed to explore whether deep learning reconstruction (DLR) could keep the image quality and reduce the radiation dose compared with hybrid iterative reconstruction (HIR) in prone position scanning for patients of early-stage ILD. This study prospectively enrolled 21 patients with early-stage ILD. All patients underwent high-resolution CT (HRCT) and low-dose CT (LDCT) scans. HRCT images were reconstructed with HIR using standard settings, and LDCT images were reconstructed with DLR (lung/bone kernel) in a mild, standard, or strong setting. Overall image quality, image noise, streak artifacts, and visualization of normal and abnormal ILD features were analysed. The effective dose of LDCT was 1.22 ± 0.09 mSv, 63.7% less than the HRCT dose. The objective noise of the LDCT DLR images was 35.9-112.6% that of the HRCT HIR images. The LDCT DLR was comparable to the HRCT HIR in terms of overall image quality. LDCT DLR (bone, strong) visualization of bronchiectasis and/or bronchiolectasis was significantly weaker than that of HRCT HIR (p = 0.046). The LDCT DLR (all settings) did not significantly differ from the HRCT HIR in the evaluation of other abnormal features, including ground glass opacities (GGOs), architectural distortion, reticulation and honeycombing. With 63.7% reduction of radiation dose, the overall image quality of LDCT DLR was comparable to HRCT HIR in prone scanning for early ILD patients. This study supported that DLR was promising for maintaining image quality under a lower radiation dose in prone scanning, and it offered valuable insights for the selection of images reconstruction algorithms for the diagnosis and follow-up of early ILD.

Deep learning for detection and diagnosis of intrathoracic lymphadenopathy from endobronchial ultrasound multimodal videos: A multi-center study.

Chen J, Li J, Zhang C, Zhi X, Wang L, Zhang Q, Yu P, Tang F, Zha X, Wang L, Dai W, Xiong H, Sun J

pubmed logopapersAug 19 2025
Convex probe endobronchial ultrasound (CP-EBUS) ultrasonographic features are important for diagnosing intrathoracic lymphadenopathy. Conventional methods for CP-EBUS imaging analysis rely heavily on physician expertise. To overcome this obstacle, we propose a deep learning-aided diagnostic system (AI-CEMA) to automatically select representative images, identify lymph nodes (LNs), and differentiate benign from malignant LNs based on CP-EBUS multimodal videos. AI-CEMA is first trained using 1,006 LNs from a single center and validated with a retrospective study and then demonstrated with a prospective multi-center study on 267 LNs. AI-CEMA achieves an area under the curve (AUC) of 0.8490 (95% confidence interval [CI], 0.8000-0.8980), which is comparable to experienced experts (AUC, 0.7847 [95% CI, 0.7320-0.8373]; p = 0.080). Additionally, AI-CEMA is successfully transferred to a pulmonary lesion diagnosis task and obtains a commendable AUC of 0.8192 (95% CI, 0.7676-0.8709). In conclusion, AI-CEMA shows great potential in clinical diagnosis of intrathoracic lymphadenopathy and pulmonary lesions by providing automated, noninvasive, and expert-level diagnosis.

Development of a lung perfusion automated quantitative model based on dual-energy CT pulmonary angiography in patients with chronic pulmonary thromboembolism.

Xi L, Wang J, Liu A, Ni Y, Du J, Huang Q, Li Y, Wen J, Wang H, Zhang S, Zhang Y, Zhang Z, Wang D, Xie W, Gao Q, Cheng Y, Zhai Z, Liu M

pubmed logopapersAug 18 2025
To develop PerAIDE, an AI-driven system for automated analysis of pulmonary perfusion blood volume (PBV) using dual-energy computed tomography pulmonary angiography (DE-CTPA) in patients with chronic pulmonary thromboembolism (CPE). In this prospective observational study, 32 patients with chronic thromboembolic pulmonary disease (CTEPD) and 151 patients with chronic thromboembolic pulmonary hypertension (CTEPH) were enrolled between January 2022 and July 2024. PerAIDE was developed to automatically quantify three distinct perfusion patterns-normal, reduced, and defective-on DE-CTPA images. Two radiologists independently assessed PBV scores. Follow-up imaging was conducted 3 months after balloon pulmonary angioplasty (BPA). PerAIDE demonstrated high agreement with the radiologists (intraclass correlation coefficient = 0.778) and reduced analysis time significantly (31 ± 3 s vs. 15 ± 4 min, p < 0.001). CTEPH patients had greater perfusion defects than CTEPD (0.35 vs. 0.29, p < 0.001), while reduced perfusion was more prevalent in CTEPD (0.36 vs. 0.30, p < 0.001). Perfusion defects correlated positively with pulmonary vascular resistance (ρ = 0.534) and mean pulmonary artery pressure (ρ = 0.482), and negatively with oxygenation index (ρ = -0.441). PerAIDE effectively differentiated CTEPH from CTEPD (AUC = 0.809, 95% CI: 0.745-0.863). At the 3-month post-BPA, a significant reduction in perfusion defects was observed (0.36 vs. 0.33, p < 0.01). CTEPD and CTEPH exhibit distinct perfusion phenotypes on DE-CTPA. PerAIDE reliably quantifies perfusion abnormalities and correlates strongly with clinical and hemodynamic markers of CPE severity. ClinicalTrials.gov, NCT06526468. Registered 28 August 2024- Retrospectively registered, https://clinicaltrials.gov/study/NCT06526468?cond=NCT06526468&rank=1 . PerAIDE is a dual-energy computed tomography pulmonary angiography (DE-CTPA) AI-driven system that rapidly and accurately assesses perfusion blood volume in patients with chronic pulmonary thromboembolism, effectively distinguishing between CTEPD and CTEPH phenotypes and correlating with disease severity and therapeutic response. Right heart catheterization for definitive diagnosis of chronic pulmonary thromboembolism (CPE) is invasive. PerAIDE-based perfusion defects correlated with disease severity to aid CPE-treatment assessment. CTEPH demonstrates severe perfusion defects, while CTEPD displays predominantly reduced perfusion. PerAIDE employs a U-Net-based adaptive threshold method, which achieves alignment with and faster processing relative to manual evaluation.

Interactive AI annotation of medical images in a virtual reality environment.

Orsmaa L, Saukkoriipi M, Kangas J, Rasouli N, Järnstedt J, Mehtonen H, Sahlsten J, Jaskari J, Kaski K, Raisamo R

pubmed logopapersAug 18 2025
Artificial intelligence (AI) achieves high-quality annotations of radiological images, yet often lacks the robustness required in clinical practice. Interactive annotation starts with an AI-generated delineation, allowing radiologists to refine it with feedback, potentially improving precision and reliability. These techniques have been explored in two-dimensional desktop environments, but are not validated by radiologists or integrated with immersive visualization technologies. We used a Virtual Reality (VR) system to determine whether (1) the annotation quality improves when radiologists can edit the AI annotation and (2) whether the extra work done by editing is worthwhile. We evaluated the clinical feasibility of an interactive VR approach to annotate mandibular and mental foramina on segmented 3D mandibular models. Three experienced dentomaxillofacial radiologists reviewed AI-generated annotations and, when needed, refined them at the voxel level in 3D space through click-based interactions until clinical standards were met. Our results indicate that integrating expert feedback within an immersive VR environment enhances annotation accuracy, improves clinical usability, and offers valuable insights for developing medical image analysis systems incorporating radiologist input. This study is the first to compare the quality of original and interactive AI annotation and to use radiologists' opinions as the measure. More research is needed for generalization.

Prospective validation of an artificial intelligence assessment in a cohort of applicants seeking financial compensation for asbestosis (PROSBEST).

Smesseim I, Lipman KBWG, Trebeschi S, Stuiver MM, Tissier R, Burgers JA, de Gooijer CJ

pubmed logopapersAug 15 2025
Asbestosis, a rare pneumoconiosis marked by diffuse pulmonary fibrosis, arises from prolonged asbestos exposure. Its diagnosis, guided by the Helsinki criteria, relies on exposure history, clinical findings, radiology, and lung function. However, interobserver variability complicates diagnoses and financial compensation. This study prospectively validated the sensitivity of an AI-driven assessment for asbestosis compensation in the Netherlands. Secondary objectives included evaluating specificity, accuracy, predictive values, area under the curve of the receiver operating characteristic (ROC-AUC), area under the precision-recall curve (PR-AUC), and interobserver variability. Between September 2020 and July 2022, 92 adult compensation applicants were assessed using both AI models and pulmonologists' reviews based on Dutch Health Council criteria. The AI model assigned an asbestosis probability score: negative (< 35), uncertain (35-66), or positive (≥ 66). Uncertain cases underwent additional reviews for a final determination. The AI assessment demonstrated sensitivity of 0.86 (95% confidence interval: 0.77-0.95), specificity of 0.85 (0.76-0.97), accuracy of 0.87 (0.79-0.93), ROC-AUC of 0.92 (0.84-0.97), and PR-AUC of 0.95 (0.89-0.99). Despite strong metrics, the sensitivity target of 98% was unmet. Pulmonologist reviews showed moderate to substantial interobserver variability. The AI-driven approach demonstrated robust accuracy but insufficient sensitivity for validation. Addressing interobserver variability and incorporating objective fibrosis measurements could enhance future reliability in clinical and compensation settings. The AI-driven assessment for financial compensation of asbestosis showed adequate accuracy but did not meet the required sensitivity for validation. We prospectively assessed the sensitivity of an AI-driven assessment procedure for financial compensation of asbestosis. The AI-driven asbestosis probability score underperformed across all metrics compared to internal testing. The AI-driven assessment procedure achieved a sensitivity of 0.86 (95% confidence interval: 0.77-0.95). It did not meet the predefined sensitivity target.

Delineation of the Centromedian Nucleus for Epilepsy Neuromodulation Using Deep Learning Reconstruction of White Matter-Nulled Imaging.

Ryan MV, Satzer D, Hu H, Litwiller DV, Rettmann DW, Tanabe J, Thompson JA, Ojemann SG, Kramer DR

pubmed logopapersAug 14 2025
Neuromodulation of the centromedian nucleus (CM) of the thalamus has shown promise in treating refractory epilepsy, particularly for idiopathic generalized epilepsy and Lennox-Gastaut syndrome. However, precise targeting of CM remains challenging. The combination of deep learning reconstruction (DLR) and fast gray matter acquisition T1 inversion recovery (FGATIR) offers potential improvements in visualization of CM for deep brain stimulation (DBS) targeting. The goal of the study was to evaluate the visualization of the putative CM on DLR-FGATIR and its alignment with atlas-defined CM boundaries, with the aim of facilitating direct targeting of CM for neuromodulation. This retrospective study included 12 patients with drug-resistant epilepsy treated with thalamic neuromodulation by using DLR-FGATIR for direct targeting. Postcontrast-T1-weighted MRI, DLR-FGATIR, and postoperative CT were coregistered and normalized into Montreal Neurological Institute (MNI) space and compared with the Morel histologic atlas. Contrast-to-noise ratios were measured between CM and neighboring nuclei. CM segmentations were compared between an experienced rater, a trainee rater, the Morel atlas, and the Thalamus Optimized Multi Atlas Segmentation (THOMAS) atlas (derived from expert segmentation of high-field MRI) by using the Sorenson-Dice coefficient (Dice score, a measure of overlap) and volume ratios. The number of electrode contacts within the Morel atlas CM was assessed. On DLR-FGATIR, CM was visible as an ovoid hypointensity in the intralaminar thalamus. Contrast-to-noise ratios were highest (<i>P</i> < .001) for the mediodorsal and medial pulvinar nuclei. Dice score with the Morel atlas CM was higher (median 0.49, interquartile range 0.40-0.58) for the experienced rater (<i>P</i> < .001) than the trainee rater (0.32, 0.19-0.46) and no different (<i>P</i> = .32) than the THOMAS atlas CM (0.56, 0.55-0.58). Both raters and the THOMAS atlas tended to under-segment the lateral portion of the Morel atlas CM, reflected by smaller segmentation volumes (<i>P</i> < .001). All electrodes targeting CM based on DLR-FGATIR traversed the Morel atlas CM. DLR-FGATIR permitted visualization and delineation of CM commensurate with a group atlas derived from high-field MRI. This technique provided reliable guidance for accurate electrode placement within CM, highlighting its potential use for direct targeting.

Restorative artificial intelligence-driven implant dentistry for immediate implant placement with an interim crown: A clinical report.

Marques VR, Soh D, Cerqueira G, Orgev A

pubmed logopapersAug 14 2025
Immediate implant placement into the extraction socket based on a restoratively driven approach poses challenges which might compromise the delivery of an immediate interim restoration on the day of surgery. The fabricated digital design of the interim restoration may require modification before delivery and may not maintain the planned form to support the gingival architecture for the future prosthetic volume for the emergence profile. This report demonstrates how to utilize the artificial intelligence (AI)-assisted segmentation of bone and tooth to enhance restoratively driven planning for immediate implant placement with an immediate interim restoration. A fractured maxillary central incisor was extracted after cone beam computed tomography (CBCT) analysis. AI-assisted segmentation from the digital imaging and communications in medicine (DICOM) file was used to separate the tooth segmentation and alveolar bone for the digital implant planning and AI-assisted design of the interim restoration copied from the natural tooth contour, optimizing the emergence profile. Immediate implant placement was completed after minimally traumatic extraction, and the AI-assisted interim restoration was delivered immediately. The AI-assisted workflow enabled predictable implant positioning based on restorative needs, reducing surgical time and optimizing delivery of the interim restoration for improved clinical outcomes. The emergence profile of the anatomic crown copied from the AI-workflow for the interim restoration guided soft tissue healing effectively.
Page 8 of 33329 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.