Back to all papers

Development of a lung perfusion automated quantitative model based on dual-energy CT pulmonary angiography in patients with chronic pulmonary thromboembolism.

Authors

Xi L,Wang J,Liu A,Ni Y,Du J,Huang Q,Li Y,Wen J,Wang H,Zhang S,Zhang Y,Zhang Z,Wang D,Xie W,Gao Q,Cheng Y,Zhai Z,Liu M

Affiliations (9)

  • China-Japan Friendship Hospital, Capital Medical University, Beijing, China.
  • National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
  • Department of Radiology, China-Japan Friendship Hospital, Beijing, China.
  • Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  • The First Clinical Medical College, Shanxi Medical University, Taiyuan, China.
  • National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Data and Project Management Unit, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
  • Beijing University of Chemical Technology, Beijing, China.
  • National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China. [email protected].
  • Department of Radiology, China-Japan Friendship Hospital, Beijing, China. [email protected].

Abstract

To develop PerAIDE, an AI-driven system for automated analysis of pulmonary perfusion blood volume (PBV) using dual-energy computed tomography pulmonary angiography (DE-CTPA) in patients with chronic pulmonary thromboembolism (CPE). In this prospective observational study, 32 patients with chronic thromboembolic pulmonary disease (CTEPD) and 151 patients with chronic thromboembolic pulmonary hypertension (CTEPH) were enrolled between January 2022 and July 2024. PerAIDE was developed to automatically quantify three distinct perfusion patterns-normal, reduced, and defective-on DE-CTPA images. Two radiologists independently assessed PBV scores. Follow-up imaging was conducted 3 months after balloon pulmonary angioplasty (BPA). PerAIDE demonstrated high agreement with the radiologists (intraclass correlation coefficient = 0.778) and reduced analysis time significantly (31 ± 3 s vs. 15 ± 4 min, p < 0.001). CTEPH patients had greater perfusion defects than CTEPD (0.35 vs. 0.29, p < 0.001), while reduced perfusion was more prevalent in CTEPD (0.36 vs. 0.30, p < 0.001). Perfusion defects correlated positively with pulmonary vascular resistance (ρ = 0.534) and mean pulmonary artery pressure (ρ = 0.482), and negatively with oxygenation index (ρ = -0.441). PerAIDE effectively differentiated CTEPH from CTEPD (AUC = 0.809, 95% CI: 0.745-0.863). At the 3-month post-BPA, a significant reduction in perfusion defects was observed (0.36 vs. 0.33, p < 0.01). CTEPD and CTEPH exhibit distinct perfusion phenotypes on DE-CTPA. PerAIDE reliably quantifies perfusion abnormalities and correlates strongly with clinical and hemodynamic markers of CPE severity. ClinicalTrials.gov, NCT06526468. Registered 28 August 2024- Retrospectively registered, https://clinicaltrials.gov/study/NCT06526468?cond=NCT06526468&rank=1 . PerAIDE is a dual-energy computed tomography pulmonary angiography (DE-CTPA) AI-driven system that rapidly and accurately assesses perfusion blood volume in patients with chronic pulmonary thromboembolism, effectively distinguishing between CTEPD and CTEPH phenotypes and correlating with disease severity and therapeutic response. Right heart catheterization for definitive diagnosis of chronic pulmonary thromboembolism (CPE) is invasive. PerAIDE-based perfusion defects correlated with disease severity to aid CPE-treatment assessment. CTEPH demonstrates severe perfusion defects, while CTEPD displays predominantly reduced perfusion. PerAIDE employs a U-Net-based adaptive threshold method, which achieves alignment with and faster processing relative to manual evaluation.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.