Sort by:
Page 8 of 34338 results

Interpretable deep fuzzy network-aided detection of central lymph node metastasis status in papillary thyroid carcinoma.

Wang W, Ning Z, Zhang J, Zhang Y, Wang W

pubmed logopapersJun 16 2025
The non-invasive assessment of central lymph node metastasis (CLNM) in patients with papillary thyroid carcinoma (PTC) plays a crucial role in assisting treatment decision and prognosis planning. This study aims to use an interpretable deep fuzzy network guided by expert knowledge to predict the CLNM status of patients with PTC from ultrasound images. A total of 1019 PTC patients were enrolled in this study, comprising 465 CLNM patients and 554 non-CLNM patients. Pathological diagnosis served as the gold standard to determine metastasis status. Clinical and morphological features of thyroid were collected as expert knowledge to guide the deep fuzzy network in predicting CLNM status. The network consisted of a region of interest (ROI) segmentation module, a knowledge-aware feature extraction module, and a fuzzy prediction module. The network was trained on 652 patients, validated on 163 patients and tested on 204 patients. The model exhibited promising performance in predicting CLNM status, achieving the area under the receiver operating characteristic curve (AUC), accuracy, precision, sensitivity and specificity of 0.786 (95% CI 0.720-0.846), 0.745 (95% CI 0.681-0.799), 0.727 (95% CI 0.636-0.819), 0.696 (95% CI 0.594-0.789), and 0.786 (95% CI 0.712-0.864), respectively. In addition, the rules of the fuzzy system in the model are easy to understand and explain, and have good interpretability. The deep fuzzy network guided by expert knowledge predicted CLNM status of PTC patients with high accuracy and good interpretability, and may be considered as an effective tool to guide preoperative clinical decision-making.

Ultrasound for breast cancer detection: A bibliometric analysis of global trends between 2004 and 2024.

Sun YY, Shi XT, Xu LL

pubmed logopapersJun 16 2025
With the advancement of computer technology and imaging equipment, ultrasound has emerged as a crucial tool in breast cancer diagnosis. To gain deeper insights into the research landscape of ultrasound in breast cancer diagnosis, this study employed bibliometric methods for a comprehensive analysis spanning from 2004 to 2024, analyzing 3523 articles from 2176 institutions in 82 countries/regions. Over this period, publications on ultrasound diagnosis of breast cancer showed a fluctuating growth trend from 2004 to 2024. Notably, China, Seoul National University and Kim EK emerged as leading contributors in ultrasound for breast cancer detection, with the most published and cited journals being Ultrasound Med Biol and Radiology. The research spots in this area included "breast lesion", "dense breast" and "breast-conserving surgery", while "machine learning", "ultrasonic imaging", "convolutional neural network", "case report", "pathological complete response", "deep learning", "artificial intelligence" and "classification" are anticipated to become future research frontiers. This groundbreaking bibliometric analysis and visualization of ultrasonic breast cancer diagnosis publications offer clinical medical professionals a reliable research focus and direction.

Classification of glioma grade and Ki-67 level prediction in MRI data: A SHAP-driven interpretation.

Bhuiyan EH, Khan MM, Hossain SA, Rahman R, Luo Q, Hossain MF, Wang K, Sumon MSI, Khalid S, Karaman M, Zhang J, Chowdhury MEH, Zhu W, Zhou XJ

pubmed logopapersJun 16 2025
This study focuses on artificial intelligence-driven classification of glioma and Ki-67 leveling using T2w-FLAIR MRI, exploring the association of Ki-67 biomarkers with deep learning (DL) features through explainable artificial intelligence (XAI) and SHapley Additive exPlanations (SHAP). This IRB-approved study included 101 patients with glioma brain tumor acquired MR images with the T2W-FLAIR sequence. We extracted DL bottleneck features using ResNet50 from glioma MR images. Principal component analysis (PCA) was deployed for dimensionality reduction. XAI was used to identify potential features. The XGBosst classified the histologic grades of the glioma and the level of Ki-67. We integrated potential DL features with patient demographics (age and sex) and Ki-67 biomarkers, utilizing SHAP to determine the model's essential features and interactions. Glioma grade classification and Ki-67 level predictions achieved overall accuracies of 0.94 and 0.91, respectively. It achieved precision scores of 0.92, 0.94, and 0.96 for glioma grades 2, 3, and 4, and 0.88, 0.94, and 0.97 for Ki-67 levels (low: 5%≤Ki-67<10%, moderate: 10%≤Ki-67≤20, and high: Ki-67>20%). Corresponding F1-scores were 0.95, 0.88, and 0.96 for glioma grades and 0.92, 0.93, and 0.87 for Ki-67 levels. SHAP analysis further highlighted a strong association between bottleneck DL features and Ki-67 biomarkers, demonstrating their potential to differentiate glioma grades and Ki-67 levels while offering valuable insights into glioma aggressiveness. This study demonstrates the precise classification of glioma grades and the prediction of Ki-67 levels to underscore the potential of AI-driven MRI analysis to enhance clinical decision-making in glioma management.

PRO: Projection Domain Synthesis for CT Imaging

Kang Chen, Bin Huang, Xuebin Yang, Junyan Zhang, Qiegen Liu

arxiv logopreprintJun 16 2025
Synthesizing high quality CT projection data remains a significant challenge due to the limited availability of annotated data and the complex nature of CT imaging. In this work, we present PRO, a projection domain synthesis foundation model for CT imaging. To the best of our knowledge, this is the first study that performs CT synthesis in the projection domain. Unlike previous approaches that operate in the image domain, PRO learns rich structural representations from raw projection data and leverages anatomical text prompts for controllable synthesis. This projection domain strategy enables more faithful modeling of underlying imaging physics and anatomical structures. Moreover, PRO functions as a foundation model, capable of generalizing across diverse downstream tasks by adjusting its generative behavior via prompt inputs. Experimental results demonstrated that incorporating our synthesized data significantly improves performance across multiple downstream tasks, including low-dose and sparse-view reconstruction. These findings underscore the versatility and scalability of PRO in data generation for various CT applications. These results highlight the potential of projection domain synthesis as a powerful tool for data augmentation and robust CT imaging. Our source code is publicly available at: https://github.com/yqx7150/PRO.

Appropriateness of acute breast symptom recommendations provided by ChatGPT.

Byrd C, Kingsbury C, Niell B, Funaro K, Bhatt A, Weinfurtner RJ, Ataya D

pubmed logopapersJun 16 2025
We evaluated the accuracy of ChatGPT-3.5's responses to common questions regarding acute breast symptoms and explored whether using lay language, as opposed to medical language, affected the accuracy of the responses. Questions were formulated addressing acute breast conditions, informed by the American College of Radiology (ACR) Appropriateness Criteria (AC) and our clinical experience at a tertiary referral breast center. Of these, seven addressed the most common acute breast symptoms, nine addressed pregnancy-associated breast symptoms, and four addressed specific management and imaging recommendations for a palpable breast abnormality. Questions were submitted three times to ChatGPT-3.5 and all responses were assessed by five fellowship-trained breast radiologists. Evaluation criteria included clinical judgment and adherence to the ACR guidelines, with responses scored as: 1) "appropriate," 2) "inappropriate" if any response contained inappropriate information, or 3) "unreliable" if responses were inconsistent. A majority vote determined the appropriateness for each question. ChatGPT-3.5 generated responses were appropriate for 7/7 (100 %) questions regarding common acute breast symptoms when phrased both colloquially and using standard medical terminology. In contrast, ChatGPT-3.5 generated responses were appropriate for 3/9 (33 %) questions about pregnancy-associated breast symptoms and 3/4 (75 %) questions about management and imaging recommendations for a palpable breast abnormality. ChatGPT-3.5 can automate healthcare information related to appropriate management of acute breast symptoms when prompted with both standard medical terminology or lay phrasing of the questions. However, physician oversight remains critical given the presence of inappropriate recommendations for pregnancy associated breast symptoms and management of palpable abnormalities.

GM-LDM: Latent Diffusion Model for Brain Biomarker Identification through Functional Data-Driven Gray Matter Synthesis

Hu Xu, Yang Jingling, Jia Sihan, Bi Yuda, Calhoun Vince

arxiv logopreprintJun 15 2025
Generative models based on deep learning have shown significant potential in medical imaging, particularly for modality transformation and multimodal fusion in MRI-based brain imaging. This study introduces GM-LDM, a novel framework that leverages the latent diffusion model (LDM) to enhance the efficiency and precision of MRI generation tasks. GM-LDM integrates a 3D autoencoder, pre-trained on the large-scale ABCD MRI dataset, achieving statistical consistency through KL divergence loss. We employ a Vision Transformer (ViT)-based encoder-decoder as the denoising network to optimize generation quality. The framework flexibly incorporates conditional data, such as functional network connectivity (FNC) data, enabling personalized brain imaging, biomarker identification, and functional-to-structural information translation for brain diseases like schizophrenia.

MRI-CORE: A Foundation Model for Magnetic Resonance Imaging

Haoyu Dong, Yuwen Chen, Hanxue Gu, Nicholas Konz, Yaqian Chen, Qihang Li, Maciej A. Mazurowski

arxiv logopreprintJun 13 2025
The widespread use of Magnetic Resonance Imaging (MRI) and the rise of deep learning have enabled the development of powerful predictive models for a wide range of diagnostic tasks in MRI, such as image classification or object segmentation. However, training models for specific new tasks often requires large amounts of labeled data, which is difficult to obtain due to high annotation costs and data privacy concerns. To circumvent this issue, we introduce MRI-CORE (MRI COmprehensive Representation Encoder), a vision foundation model pre-trained using more than 6 million slices from over 110,000 MRI volumes across 18 main body locations. Experiments on five diverse object segmentation tasks in MRI demonstrate that MRI-CORE can significantly improve segmentation performance in realistic scenarios with limited labeled data availability, achieving an average gain of 6.97% 3D Dice Coefficient using only 10 annotated slices per task. We further demonstrate new model capabilities in MRI such as classification of image properties including body location, sequence type and institution, and zero-shot segmentation. These results highlight the value of MRI-CORE as a generalist vision foundation model for MRI, potentially lowering the data annotation resource barriers for many applications.

Prediction of functional outcome after traumatic brain injury: a narrative review.

Iaquaniello C, Scordo E, Robba C

pubmed logopapersJun 13 2025
To synthesize current evidence on prognostic factors, tools, and strategies influencing functional outcomes in patients with traumatic brain injury (TBI), with a focus on the acute and postacute phases of care. Key early predictors such as Glasgow Coma Scale (GCS) scores, pupillary reactivity, and computed tomography (CT) imaging findings remain fundamental in guiding clinical decision-making. Prognostic models like IMPACT and CRASH enhance early risk stratification, while outcome measures such as the Glasgow Outcome Scale-Extended (GOS-E) provide structured long-term assessments. Despite their utility, heterogeneity in assessment approaches and treatment protocols continues to limit consistency in outcome predictions. Recent advancements highlight the value of fluid biomarkers like neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP), which offer promising avenues for improved accuracy. Additionally, artificial intelligence models are emerging as powerful tools to integrate complex datasets and refine individualized outcome forecasting. Neurological prognostication after TBI is evolving through the integration of clinical, radiological, molecular, and computational data. Although standardized models and scales remain foundational, emerging technologies and therapies - such as biomarkers, machine learning, and neurostimulants - represent a shift toward more personalized and actionable strategies to optimize recovery and long-term function.

Taming Stable Diffusion for Computed Tomography Blind Super-Resolution

Chunlei Li, Yilei Shi, Haoxi Hu, Jingliang Hu, Xiao Xiang Zhu, Lichao Mou

arxiv logopreprintJun 13 2025
High-resolution computed tomography (CT) imaging is essential for medical diagnosis but requires increased radiation exposure, creating a critical trade-off between image quality and patient safety. While deep learning methods have shown promise in CT super-resolution, they face challenges with complex degradations and limited medical training data. Meanwhile, large-scale pre-trained diffusion models, particularly Stable Diffusion, have demonstrated remarkable capabilities in synthesizing fine details across various vision tasks. Motivated by this, we propose a novel framework that adapts Stable Diffusion for CT blind super-resolution. We employ a practical degradation model to synthesize realistic low-quality images and leverage a pre-trained vision-language model to generate corresponding descriptions. Subsequently, we perform super-resolution using Stable Diffusion with a specialized controlling strategy, conditioned on both low-resolution inputs and the generated text descriptions. Extensive experiments show that our method outperforms existing approaches, demonstrating its potential for achieving high-quality CT imaging at reduced radiation doses. Our code will be made publicly available.
Page 8 of 34338 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.