Sort by:
Page 8 of 14133 results

Incorporating radiomic MRI models for presurgical response assessment in patients with early breast cancer undergoing neoadjuvant systemic therapy: Collaborative insights from breast oncologists and radiologists.

Gaudio M, Vatteroni G, De Sanctis R, Gerosa R, Benvenuti C, Canzian J, Jacobs F, Saltalamacchia G, Rizzo G, Pedrazzoli P, Santoro A, Bernardi D, Zambelli A

pubmed logopapersJun 1 2025
The assessment of neoadjuvant treatment's response is critical for selecting the most suitable therapeutic options for patients with breast cancer to reduce the need for invasive local therapies. Breast magnetic resonance imaging (MRI) is so far one of the most accurate approaches for assessing pathological complete response, although this is limited by the qualitative and subjective nature of radiologists' assessment, often making it insufficient for deciding whether to forgo additional locoregional therapy measures. To increase the accuracy and prediction of radiomic MRI with the aid of machine learning models and deep learning methods, as part of artificial intelligence, have been used to analyse the different subtypes of breast cancer and the specific changes observed before and after therapy. This review discusses recent advancements in radiomic MRI models for presurgical response assessment for patients with early breast cancer receiving preoperative treatments, with a focus on their implications for clinical practice.

Automated contouring for breast cancer radiotherapy in the isocentric lateral decubitus position: a neural network-based solution for enhanced precision and efficiency.

Loap P, Monteil R, Kirova Y, Vu-Bezin J

pubmed logopapersJun 1 2025
Adjuvant radiotherapy is essential for reducing local recurrence and improving survival in breast cancer patients, but it carries a risk of ischemic cardiac toxicity, which increases with heart exposure. The isocentric lateral decubitus position, where the breast rests flat on a support, reduces heart exposure and leads to delivery of a more uniform dose. This position is particularly beneficial for patients with unique anatomies, such as those with pectus excavatum or larger breast sizes. While artificial intelligence (AI) algorithms for autocontouring have shown promise, they have not been tailored to this specific position. This study aimed to develop and evaluate a neural network-based autocontouring algorithm for patients treated in the isocentric lateral decubitus position. In this single-center study, 1189 breast cancer patients treated after breast-conserving surgery were included. Their simulation CT scans (1209 scans) were used to train and validate a neural network-based autocontouring algorithm (nnU-Net). Of these, 1087 scans were used for training, and 122 scans were reserved for validation. The algorithm's performance was assessed using the Dice similarity coefficient (DSC) to compare the automatically delineated volumes with manual contours. A clinical evaluation of the algorithm was performed on 30 additional patients, with contours rated by two expert radiation oncologists. The neural network-based algorithm achieved a segmentation time of approximately 4 min, compared to 20 min for manual segmentation. The DSC values for the validation cohort were 0.88 for the treated breast, 0.90 for the heart, 0.98 for the right lung, and 0.97 for the left lung. In the clinical evaluation, 90% of the automatically contoured breast volumes were rated as acceptable without corrections, while the remaining 10% required minor adjustments. All lung contours were accepted without corrections, and heart contours were rated as acceptable in 93.3% of cases, with minor corrections needed in 6.6% of cases. This neural network-based autocontouring algorithm offers a practical, time-saving solution for breast cancer radiotherapy planning in the isocentric lateral decubitus position. Its strong geometric performance, clinical acceptability, and significant time efficiency make it a valuable tool for modern radiotherapy practices, particularly in high-volume centers.

BCT-Net: semantic-guided breast cancer segmentation on BUS.

Xin J, Yu Y, Shen Q, Zhang S, Su N, Wang Z

pubmed logopapersJun 1 2025
Accurately and swiftly segmenting breast tumors is significant for cancer diagnosis and treatment. Ultrasound imaging stands as one of the widely employed methods in clinical practice. However, due to challenges such as low contrast, blurred boundaries, and prevalent shadows in ultrasound images, tumor segmentation remains a daunting task. In this study, we propose BCT-Net, a network amalgamating CNN and transformer components for breast tumor segmentation. BCT-Net integrates a dual-level attention mechanism to capture more features and redefines the skip connection module. We introduce the utilization of a classification task as an auxiliary task to impart additional semantic information to the segmentation network, employing supervised contrastive learning. A hybrid objective loss function is proposed, which combines pixel-wise cross-entropy, binary cross-entropy, and supervised contrastive learning loss. Experimental results demonstrate that BCT-Net achieves high precision, with Pre and DSC indices of 86.12% and 88.70%, respectively. Experiments conducted on the BUSI dataset of breast ultrasound images manifest that this approach exhibits high accuracy in breast tumor segmentation.

Adaptive ensemble loss and multi-scale attention in breast ultrasound segmentation with UMA-Net.

Dar MF, Ganivada A

pubmed logopapersJun 1 2025
The generalization of deep learning (DL) models is critical for accurate lesion segmentation in breast ultrasound (BUS) images. Traditional DL models often struggle to generalize well due to the high frequency and scale variations inherent in BUS images. Moreover, conventional loss functions used in these models frequently result in imbalanced optimization, either prioritizing region overlap or boundary accuracy, which leads to suboptimal segmentation performance. To address these issues, we propose UMA-Net, an enhanced UNet architecture specifically designed for BUS image segmentation. UMA-Net integrates residual connections, attention mechanisms, and a bottleneck with atrous convolutions to effectively capture multi-scale contextual information without compromising spatial resolution. Additionally, we introduce an adaptive ensemble loss function that dynamically balances the contributions of different loss components during training, ensuring optimization across key segmentation metrics. This novel approach mitigates the imbalances found in conventional loss functions. We validate UMA-Net on five diverse BUS datasets-BUET, BUSI, Mendeley, OMI, and UDIAT-demonstrating superior performance. Our findings highlight the importance of addressing frequency and scale variations, confirming UMA-Net as a robust and generalizable solution for BUS image segmentation.

Enhancing detection of previously missed non-palpable breast carcinomas through artificial intelligence.

Mansour S, Kamal R, Hussein SA, Emara M, Kassab Y, Taha SN, Gomaa MMM

pubmed logopapersJun 1 2025
To investigate the impact of artificial intelligence (AI) reading digital mammograms in increasing the chance of detecting missed breast cancer, by studying the AI- flagged early morphology indictors, overlooked by the radiologist, and correlating them with the missed cancer pathology types. Mammograms done in 2020-2023, presenting breast carcinomas (n = 1998), were analyzed in concordance with the prior one year's result (2019-2022) assumed negative or benign. Present mammograms reviewed for the descriptors: asymmetry, distortion, mass, and microcalcifications. The AI presented abnormalities by overlaying color hue and scoring percentage for the degree of suspicion of malignancy. Prior mammogram with AI marking compromised 54 % (n = 555), and in the present mammograms, AI targeted 904 (88 %) carcinomas. The descriptor proportion of "asymmetry" was the common presentation of missed breast carcinoma (64.1 %) in the prior mammograms and the highest detection rate for AI was presented by "distortion" (100 %) followed by "grouped microcalcifications" (80 %). AI performance to predict malignancy in previously assigned negative or benign mammograms showed sensitivity of 73.4 %, specificity of 89 %, and accuracy of 78.4 %. Reading mammograms with AI significantly enhances the detection of early cancerous changes, particularly in dense breast tissues. The AI's detection rate does not correlate with specific pathological types of breast cancer, highlighting its broad utility. Subtle mammographic changes in postmenopausal women, not corroborated by ultrasound but marked by AI, warrant further evaluation by advanced applications of digital mammograms and close interval AI-reading mammogram follow up to minimize the potential for missed breast carcinoma.

AI image analysis as the basis for risk-stratified screening.

Strand F

pubmed logopapersJun 1 2025
Artificial intelligence (AI) has emerged as a transformative tool in breast cancer screening, with two distinct applications: computer-aided cancer detection (CAD) and risk prediction. While AI CAD systems are slowly finding its way into clinical practice to assist radiologists or make independent reads, this review focuses on AI risk models, which aim to predict a patient's likelihood of being diagnosed with breast cancer within a few years after negative screening. Unlike AI CAD systems, AI risk models are mainly explored in research settings without widespread clinical adoption. This review synthesizes advances in AI-driven risk prediction models, from traditional imaging biomarkers to cutting-edge deep learning methodologies and multimodal approaches. Contributions by leading researchers are explored with critical appraisal of their methods and findings. Ethical, practical, and clinical challenges in implementing AI models are also discussed, with an emphasis on real-world applications. This review concludes by proposing future directions to optimize the adoption of AI tools in breast cancer screening and improve equity and outcomes for diverse populations.

Computer-Aided Detection (CADe) and Segmentation Methods for Breast Cancer Using Magnetic Resonance Imaging (MRI).

Jannatdoust P, Valizadeh P, Saeedi N, Valizadeh G, Salari HM, Saligheh Rad H, Gity M

pubmed logopapersJun 1 2025
Breast cancer continues to be a major health concern, and early detection is vital for enhancing survival rates. Magnetic resonance imaging (MRI) is a key tool due to its substantial sensitivity for invasive breast cancers. Computer-aided detection (CADe) systems enhance the effectiveness of MRI by identifying potential lesions, aiding radiologists in focusing on areas of interest, extracting quantitative features, and integrating with computer-aided diagnosis (CADx) pipelines. This review aims to provide a comprehensive overview of the current state of CADe systems in breast MRI, focusing on the technical details of pipelines and segmentation models including classical intensity-based methods, supervised and unsupervised machine learning (ML) approaches, and the latest deep learning (DL) architectures. It highlights recent advancements from traditional algorithms to sophisticated DL models such as U-Nets, emphasizing CADe implementation of multi-parametric MRI acquisitions. Despite these advancements, CADe systems face challenges like variable false-positive and negative rates, complexity in interpreting extensive imaging data, variability in system performance, and lack of large-scale studies and multicentric models, limiting the generalizability and suitability for clinical implementation. Technical issues, including image artefacts and the need for reproducible and explainable detection algorithms, remain significant hurdles. Future directions emphasize developing more robust and generalizable algorithms, integrating explainable AI to improve transparency and trust among clinicians, developing multi-purpose AI systems, and incorporating large language models to enhance diagnostic reporting and patient management. Additionally, efforts to standardize and streamline MRI protocols aim to increase accessibility and reduce costs, optimizing the use of CADe systems in clinical practice. LEVEL OF EVIDENCE: NA TECHNICAL EFFICACY: Stage 2.

Utilizing Pseudo Color Image to Improve the Performance of Deep Transfer Learning-Based Computer-Aided Diagnosis Schemes in Breast Mass Classification.

Jones MA, Zhang K, Faiz R, Islam W, Jo J, Zheng B, Qiu Y

pubmed logopapersJun 1 2025
The purpose of this study is to investigate the impact of using morphological information in classifying suspicious breast lesions. The widespread use of deep transfer learning can significantly improve the performance of the mammogram based CADx schemes. However, digital mammograms are grayscale images, while deep learning models are typically optimized using the natural images containing three channels. Thus, it is needed to convert the grayscale mammograms into three channel images for the input of deep transfer models. This study aims to develop a novel pseudo color image generation method which utilizes the mass contour information to enhance the classification performance. Accordingly, a total of 830 breast cancer cases were retrospectively collected, which contains 310 benign and 520 malignant cases, respectively. For each case, a total of four regions of interest (ROI) are collected from the grayscale images captured for both the CC and MLO views of the two breasts. Meanwhile, a total of seven pseudo color image sets are generated as the input of the deep learning models, which are created through a combination of the original grayscale image, a histogram equalized image, a bilaterally filtered image, and a segmented mass. Accordingly, the output features from four identical pre-trained deep learning models are concatenated and then processed by a support vector machine-based classifier to generate the final benign/malignant labels. The performance of each image set was evaluated and compared. The results demonstrate that the pseudo color sets containing the manually segmented mass performed significantly better than all other pseudo color sets, which achieved an AUC (area under the ROC curve) up to 0.889 ± 0.012 and an overall accuracy up to 0.816 ± 0.020, respectively. At the same time, the performance improvement is also dependent on the accuracy of the mass segmentation. The results of this study support our hypothesis that adding accurately segmented mass contours can provide complementary information, thereby enhancing the performance of the deep transfer model in classifying suspicious breast lesions.

A Machine Learning Model Based on Global Mammographic Radiomic Features Can Predict Which Normal Mammographic Cases Radiology Trainees Find Most Difficult.

Siviengphanom S, Brennan PC, Lewis SJ, Trieu PD, Gandomkar Z

pubmed logopapersJun 1 2025
This study aims to investigate whether global mammographic radiomic features (GMRFs) can distinguish hardest- from easiest-to-interpret normal cases for radiology trainees (RTs). Data from 137 RTs were analysed, with each interpreting seven educational self-assessment test sets comprising 60 cases (40 normal and 20 cancer). The study only examined normal cases. Difficulty scores were computed based on the percentage of readers who incorrectly classified each case, leading to their classification as hardest- or easiest-to-interpret based on whether their difficulty scores fell within and above the 75th or within and below the 25th percentile, respectively (resulted in 140 cases in total used). Fifty-nine low-density and 81 high-density cases were identified. Thirty-four GMRFs were extracted for each case. A random forest machine learning model was trained to differentiate between hardest- and easiest-to-interpret normal cases and validated using leave-one-out-cross-validation approach. The model's performance was evaluated using the area under receiver operating characteristic curve (AUC). Significant features were identified through feature importance analysis. Difference between hardest- and easiest-to-interpret cases among 34 GMRFs and in difficulty level between low- and high-density cases was tested using Kruskal-Wallis. The model achieved AUC = 0.75 with cluster prominence and range emerging as the most useful features. Fifteen GMRFs differed significantly (p < 0.05) between hardest- and easiest-to-interpret cases. Difficulty level among low- vs high-density cases did not differ significantly (p = 0.12). GMRFs can predict hardest-to-interpret normal cases for RTs, underscoring the importance of GMRFs in identifying the most difficult normal cases for RTs and facilitating customised training programmes tailored to trainees' learning needs.

Cross-site Validation of AI Segmentation and Harmonization in Breast MRI.

Huang Y, Leotta NJ, Hirsch L, Gullo RL, Hughes M, Reiner J, Saphier NB, Myers KS, Panigrahi B, Ambinder E, Di Carlo P, Grimm LJ, Lowell D, Yoon S, Ghate SV, Parra LC, Sutton EJ

pubmed logopapersJun 1 2025
This work aims to perform a cross-site validation of automated segmentation for breast cancers in MRI and to compare the performance to radiologists. A three-dimensional (3D) U-Net was trained to segment cancers in dynamic contrast-enhanced axial MRIs using a large dataset from Site 1 (n = 15,266; 449 malignant and 14,817 benign). Performance was validated on site-specific test data from this and two additional sites, and common publicly available testing data. Four radiologists from each of the three clinical sites provided two-dimensional (2D) segmentations as ground truth. Segmentation performance did not differ between the network and radiologists on the test data from Sites 1 and 2 or the common public data (median Dice score Site 1, network 0.86 vs. radiologist 0.85, n = 114; Site 2, 0.91 vs. 0.91, n = 50; common: 0.93 vs. 0.90). For Site 3, an affine input layer was fine-tuned using segmentation labels, resulting in comparable performance between the network and radiologist (0.88 vs. 0.89, n = 42). Radiologist performance differed on the common test data, and the network numerically outperformed 11 of the 12 radiologists (median Dice: 0.85-0.94, n = 20). In conclusion, a deep network with a novel supervised harmonization technique matches radiologists' performance in MRI tumor segmentation across clinical sites. We make code and weights publicly available to promote reproducible AI in radiology.
Page 8 of 14133 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.