Sort by:
Page 76 of 94940 results

The imaging crisis in axial spondyloarthritis.

Diekhoff T, Poddubnyy D

pubmed logopapersMay 16 2025
Imaging holds a pivotal yet contentious role in the early diagnosis of axial spondyloarthritis. Although MRI has enhanced our ability to detect early inflammatory changes, particularly bone marrow oedema in the sacroiliac joints, the poor specificity of this finding introduces a substantial risk of overdiagnosis. The well intentioned push by rheumatologists towards earlier intervention could inadvertently lead to the misclassification of mechanical or degenerative conditions (eg, osteitis condensans ilii) as inflammatory disease, especially in the absence of structural lesions. Diagnostic uncertainty is further fuelled by anatomical variability, sex differences, and suboptimal imaging protocols. Current strategies-such as quantifying bone marrow oedema and analysing its distribution patterns, and integrating clinical and laboratory data-offer partial guidance for avoiding overdiagnosis but fall short of resolving the core diagnostic dilemma. Emerging imaging technologies, including high-resolution sequences, quantitative MRI, radiomics, and artificial intelligence, could improve diagnostic precision, but these tools remain exploratory. This Viewpoint underscores the need for a shift in imaging approaches, recognising that although timely diagnosis and treatment is essential to prevent long-term structural damage, robust and reliable imaging criteria are also needed. Without such advances, the imaging field risks repeating past missteps seen in other rheumatological conditions.

CheX-DS: Improving Chest X-ray Image Classification with Ensemble Learning Based on DenseNet and Swin Transformer

Xinran Li, Yu Liu, Xiujuan Xu, Xiaowei Zhao

arxiv logopreprintMay 16 2025
The automatic diagnosis of chest diseases is a popular and challenging task. Most current methods are based on convolutional neural networks (CNNs), which focus on local features while neglecting global features. Recently, self-attention mechanisms have been introduced into the field of computer vision, demonstrating superior performance. Therefore, this paper proposes an effective model, CheX-DS, for classifying long-tail multi-label data in the medical field of chest X-rays. The model is based on the excellent CNN model DenseNet for medical imaging and the newly popular Swin Transformer model, utilizing ensemble deep learning techniques to combine the two models and leverage the advantages of both CNNs and Transformers. The loss function of CheX-DS combines weighted binary cross-entropy loss with asymmetric loss, effectively addressing the issue of data imbalance. The NIH ChestX-ray14 dataset is selected to evaluate the model's effectiveness. The model outperforms previous studies with an excellent average AUC score of 83.76\%, demonstrating its superior performance.

Assessing fetal lung maturity: Integration of ultrasound radiomics and deep learning.

Chen W, Zeng B, Ling X, Chen C, Lai J, Lin J, Liu X, Zhou H, Guo X

pubmed logopapersMay 16 2025
This study built a model to forecast the maturity of lungs by blending radiomics and deep learning methods. We examined ultrasound images from 263 pregnancies in the pregnancy stages. Utilizing the GE VOLUSON E8 system we captured images to extract and analyze radiomic features. These features were integrated with clinical data by means of deep learning algorithms such as DenseNet121 to enhance the accuracy of assessing fetal lung maturity. This combined model was validated by receiver operating characteristic (ROC) curve, calibration diagram, as well as decision curve analysis (DCA). We discovered that the accuracy and reliability of the diagnosis indicated that this method significantly improves the level of prediction of fetal lung maturity. This novel non-invasive diagnostic technology highlights the potential advantages of integrating diverse data sources to enhance prenatal care and infant health. The study lays groundwork, for validation and refinement of the model across various healthcare settings.

From Embeddings to Accuracy: Comparing Foundation Models for Radiographic Classification

Xue Li, Jameson Merkow, Noel C. F. Codella, Alberto Santamaria-Pang, Naiteek Sangani, Alexander Ersoy, Christopher Burt, John W. Garrett, Richard J. Bruce, Joshua D. Warner, Tyler Bradshaw, Ivan Tarapov, Matthew P. Lungren, Alan B. McMillan

arxiv logopreprintMay 16 2025
Foundation models, pretrained on extensive datasets, have significantly advanced machine learning by providing robust and transferable embeddings applicable to various domains, including medical imaging diagnostics. This study evaluates the utility of embeddings derived from both general-purpose and medical domain-specific foundation models for training lightweight adapter models in multi-class radiography classification, focusing specifically on tube placement assessment. A dataset comprising 8842 radiographs classified into seven distinct categories was employed to extract embeddings using six foundation models: DenseNet121, BiomedCLIP, Med-Flamingo, MedImageInsight, Rad-DINO, and CXR-Foundation. Adapter models were subsequently trained using classical machine learning algorithms. Among these combinations, MedImageInsight embeddings paired with an support vector machine adapter yielded the highest mean area under the curve (mAUC) at 93.8%, followed closely by Rad-DINO (91.1%) and CXR-Foundation (89.0%). In comparison, BiomedCLIP and DenseNet121 exhibited moderate performance with mAUC scores of 83.0% and 81.8%, respectively, whereas Med-Flamingo delivered the lowest performance at 75.1%. Notably, most adapter models demonstrated computational efficiency, achieving training within one minute and inference within seconds on CPU, underscoring their practicality for clinical applications. Furthermore, fairness analyses on adapters trained on MedImageInsight-derived embeddings indicated minimal disparities, with gender differences in performance within 2% and standard deviations across age groups not exceeding 3%. These findings confirm that foundation model embeddings-especially those from MedImageInsight-facilitate accurate, computationally efficient, and equitable diagnostic classification using lightweight adapters for radiographic image analysis.

Development and validation of clinical-radiomics deep learning model based on MRI for endometrial cancer molecular subtypes classification.

Yue W, Han R, Wang H, Liang X, Zhang H, Li H, Yang Q

pubmed logopapersMay 16 2025
This study aimed to develop and validate a clinical-radiomics deep learning (DL) model based on MRI for endometrial cancer (EC) molecular subtypes classification. This multicenter retrospective study included EC patients undergoing surgery, MRI, and molecular pathology diagnosis across three institutions from January 2020 to March 2024. Patients were divided into training, internal, and external validation cohorts. A total of 386 handcrafted radiomics features were extracted from each MR sequence, and MoCo-v2 was employed for contrastive self-supervised learning to extract 2048 DL features per patient. Feature selection integrated selected features into 12 machine learning methods. Model performance was evaluated with the AUC. A total of 526 patients were included (mean age, 55.01 ± 11.07). The radiomics model and clinical model demonstrated comparable performance across the internal and external validation cohorts, with macro-average AUCs of 0.70 vs 0.69 and 0.70 vs 0.67 (p = 0.51), respectively. The radiomics DL model, compared to the radiomics model, improved AUCs for POLEmut (0.68 vs 0.79), NSMP (0.71 vs 0.74), and p53abn (0.76 vs 0.78) in the internal validation (p = 0.08). The clinical-radiomics DL Model outperformed both the clinical model and radiomics DL model (macro-average AUC = 0.79 vs 0.69 and 0.73, in the internal validation [p = 0.02], 0.74 vs 0.67 and 0.69 in the external validation [p = 0.04]). The clinical-radiomics DL model based on MRI effectively distinguished EC molecular subtypes and demonstrated strong potential, with robust validation across multiple centers. Future research should explore larger datasets to further uncover DL's potential. Our clinical-radiomics DL model based on MRI has the potential to distinguish EC molecular subtypes. This insight aids in guiding clinicians in tailoring individualized treatments for EC patients. Accurate classification of EC molecular subtypes is crucial for prognostic risk assessment. The clinical-radiomics DL model outperformed both the clinical model and the radiomics DL model. The MRI features exhibited better diagnostic performance for POLEmut and p53abn.

Application of Quantitative CT and Machine Learning in the Evaluation and Diagnosis of Polymyositis/Dermatomyositis-Associated Interstitial Lung Disease.

Yang K, Chen Y, He L, Sheng Y, Hei H, Zhang J, Jin C

pubmed logopapersMay 16 2025
To investigate lung changes in patients with polymyositis/dermatomyositis-associated interstitial lung disease (PM/DM-ILD) using quantitative CT and to construct a diagnostic model to evaluate the application of quantitative CT and machine learning in diagnosing PM/DM-ILD. Chest CT images from 348 PM/DM individuals were quantitatively analyzed to obtain the lung volume (LV), mean lung density (MLD), and intrapulmonary vascular volume (IPVV) of the whole lung and each lung lobe. The percentage of high attenuation area (HAA %) was determined using the lung density histogram. Patients hospitalized from 2016 to 2021 were used as the training set (n=258), and from 2022 to 2023 were used as the temporal test set (n=90). Seven classification models were established, and their performance was evaluated through ROC analysis, decision curve analysis, calibration, and precision-recall curve. The optimal model was selected and interpreted with Python's SHAP model interpretation package. Compared to the non-ILD group, the mean lung density and percentage of high attenuation area in the whole lung and each lung lobe were significantly increased, and the lung volume and intrapulmonary vessel volume were significantly decreased in the ILD group. The Random Forest (RF) model demonstrated superior performance with the test set area under the curve of 0.843 (95% CI: 0.821-0.865), accuracy of 0.778, sensitivity of 0.784, and specificity of 0.750. Quantitative CT serves as an objective and precise method to assess pulmonary changes in PM/DM-ILD patients. The RF model based on CT quantitative parameters displayed strong diagnostic efficiency in identifying ILD, offering a new and convenient approach for evaluating and diagnosing PM/DM-ILD patients.

Deep learning predicts HER2 status in invasive breast cancer from multimodal ultrasound and MRI.

Fan Y, Sun K, Xiao Y, Zhong P, Meng Y, Yang Y, Du Z, Fang J

pubmed logopapersMay 16 2025
The preoperative human epidermal growth factor receptor type 2 (HER2) status of breast cancer is typically determined by pathological examination of a core needle biopsy, which influences the efficacy of neoadjuvant chemotherapy (NAC). However, the highly heterogeneous nature of breast cancer and the limitations of needle aspiration biopsy increase the instability of pathological evaluation. The aim of this study was to predict HER2 status in preoperative breast cancer using deep learning (DL) models based on ultrasound (US) and magnetic resonance imaging (MRI). The study included women with invasive breast cancer who underwent US and MRI at our institution between January 2021 and July 2024. US images and dynamic contrast-enhanced T1-weighted MRI images were used to construct DL models (DL-US: the DL model based on US; DL-MRI: the model based on MRI; and DL-MRI&US: the combined model based on both MRI and US). All classifications were based on postoperative pathological evaluation. Receiver operating characteristic analysis and the DeLong test were used to compare the diagnostic performance of the DL models. In the test cohort, DL-US differentiated the HER2 status of breast cancer with an AUC of 0.842 (95% CI: 0.708-0.931), and sensitivity and specificity of 89.5% and 79.3%, respectively. DL-MRI achieved an AUC of 0.800 (95% CI: 0.660-0.902), with sensitivity and specificity of 78.9% and 79.3%, respectively. DL-MRI&US yielded an AUC of 0.898 (95% CI: 0.777-0.967), with sensitivity and specificity of 63.2% and 100.0%, respectively.

Multicenter development of a deep learning radiomics and dosiomics nomogram to predict radiation pneumonia risk in non-small cell lung cancer.

Wang X, Zhang A, Yang H, Zhang G, Ma J, Ye S, Ge S

pubmed logopapersMay 16 2025
Radiation pneumonia (RP) is the most common side effect of chest radiotherapy, and can affect patients' quality of life. This study aimed to establish a combined model of radiomics, dosiomics, deep learning (DL) based on simulated location CT and dosimetry images combining with clinical parameters to improve the predictive ability of ≥ 2 grade RP (RP2) in patients with non-small cell lung cancer (NSCLC). This study retrospectively collected 245 patients with NSCLC who received radiotherapy from three hospitals. 162 patients from Hospital I were randomly divided into training cohort and internal validation cohort according to 7:3. 83 patients from two other hospitals served as an external validation cohort. Multivariate analysis was used to screen independent clinical predictors and establish clinical model (CM). The radiomic and dosiomics (RD) features and DL features were extracted from simulated location CT and dosimetry images based on the region of interest (ROI) of total lung-PTV (TL-PTV). The features screened by the t-test and least absolute shrinkage and selection operator (LASSO) were used to construct the RD and DL model, and RD-score and DL-score were calculated. RD-score, DL-score and independent clinical features were combined to establish deep learning radiomics and dosiomics nomogram (DLRDN). The model performance was evaluated by area under the curve (AUC). Three clinical factors, including V20, V30, and mean lung dose (MLD), were used to establish the CM. 7 RD features including 4 radiomics features and 3 dosiomics features were selected to establish RD model. 10 DL features were selected to establish DL model. Among the different models, DLRDN showed the best predictions, with the AUCs of 0.891 (0.826-0.957), 0.825 (0.693-0.957), and 0.801 (0.698-0.904) in the training cohort, internal validation cohort and external validation cohort, respectively. DCA showed that DLRDN had a higher overall net benefit than other models. The calibration curve showed that the predicted value of DLRDN was in good agreement with the actual value. Overall, radiomics, dosiomics, and DL features based on simulated location CT and dosimetry images have the potential to help predict RP2. The combination of multi-dimensional data produced the optimal predictive model, which could provide guidance for clinicians.

Machine learning prediction of pathological complete response to neoadjuvant chemotherapy with peritumoral breast tumor ultrasound radiomics: compare with intratumoral radiomics and clinicopathologic predictors.

Yao J, Zhou W, Jia X, Zhu Y, Chen X, Zhan W, Zhou J

pubmed logopapersMay 16 2025
Noninvasive, accurate and novel approaches to predict patients who will achieve pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) could assist treatment strategies. The aim of this study was to explore the application of machine learning (ML) based peritumoral ultrasound radiomics signature (PURS), compared with intratumoral radiomics (IURS) and clinicopathologic factors, for early prediction of pCR. We analyzed 358 locally advanced breast cancer patients (250 in the training set and 108 in the test set), who accepted NAC and post NAC surgery at our institution. The clinical and pathological data were analyzed using the independent t test and the Chi-square test to determine the factors associated with pCR. The PURS and IURS of baseline breast tumors were extracted by using 3D-slicer and PyRadiomics software. Five ML classifiers including linear discriminant analysis (LDA), support vector machine (SVM), random forest (RF), logistic regression (LR), and adaptive boosting (AdaBoost) were applied to construct radiomics predictive models. The performance of PURS, IURS models and clinicopathologic predictors were assessed with respect to sensitivity, specificity, accuracy and the areas under the curve (AUCs). Ninety-seven patients achieved pCR. The clinicopathologic predictors obtained an AUC of 0.759. Among PURS models, the RF classifier achieved better efficacy (AUC of 0.889) than LR (0.849), AdaBoost (0.823), SVM (0.746) and LDA (0.732). The RF classifier also obtained a maximum AUC of 0.931 than 0.920 (AdaBoost), 0.875 (LR), 0.825 (SVM), and 0.798 (LDA) in IURS models in the test set. The RF based PURS yielded higher predictive ability (AUC 0.889; 95% CI 0.814, 0.947) than clinicopathologic factors (AUC 0.759; 95% CI 0.657, 0.861; p < 0.05), but lower efficacy compared with IURS (AUC 0.931; 95% CI 0.865, 0.980; p < 0.05). The peritumoral US radiomics, as a novel potential biomarker, can assist clinical therapy decisions.
Page 76 of 94940 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.