Sort by:
Page 74 of 100993 results

Deep learning-based model for difficult transfemoral access prediction compared with human assessment in stroke thrombectomy.

Canals P, Garcia-Tornel A, Requena M, Jabłońska M, Li J, Balocco S, Díaz O, Tomasello A, Ribo M

pubmed logopapersMay 22 2025
In mechanical thrombectomy (MT), extracranial vascular tortuosity is among the main determinants of procedure duration and success. Currently, no rapid and reliable method exists to identify the anatomical features precluding fast and stable access to the cervical vessels. A retrospective sample of 513 patients were included in this study. Patients underwent first-line transfemoral MT following anterior circulation large vessel occlusion stroke. Difficult transfemoral access (DTFA) was defined as impossible common carotid catheterization or time from groin puncture to first carotid angiogram >30 min. A machine learning model based on 29 anatomical features automatically extracted from head-and-neck computed tomography angiography (CTA) was developed to predict DTFA. Three experienced raters independently assessed the likelihood of DTFA on a reduced cohort of 116 cases using a Likert scale as benchmark for the model, using preprocedural CTA as well as automatic 3D vascular segmentation separately. Among the study population, 11.5% of procedures (59/513) presented DTFA. Six different features from the aortic, supra-aortic, and cervical regions were included in the model. Cross-validation resulted in an area under the receiver operating characteristic (AUROC) curve of 0.76 (95% CI 0.75 to 0.76) for DTFA prediction, with high sensitivity for impossible access identification (0.90, 95% CI 0.81 to 0.94). The model outperformed human assessment in the reduced cohort [F1-score (95% CI) by experts with CTA: 0.43 (0.37 to 0.50); experts with 3D segmentation: 0.50 (0.46 to 0.54); and model: 0.70 (0.65 to 0.75)]. A fully automatic model for DTFA prediction was developed and validated. The presented method improved expert assessment of difficult access prediction in stroke MT. Derived information could be used to guide decisions regarding arterial access for MT.

Multimodal MRI radiomics enhances epilepsy prediction in pediatric low-grade glioma patients.

Tang T, Wu Y, Dong X, Zhai X

pubmed logopapersMay 22 2025
Determining whether pediatric patients with low-grade gliomas (pLGGs) have tumor-related epilepsy (GAE) is a crucial aspect of preoperative evaluation. Therefore, we aim to propose an innovative, machine learning- and deep learning-based framework for the rapid and non-invasive preoperative assessment of GAE in pediatric patients using magnetic resonance imaging (MRI). In this study, we propose a novel radiomics-based approach that integrates tumor and peritumoral features extracted from preoperative multiparametric MRI scans to accurately and non-invasively predict the occurrence of tumor-related epilepsy in pediatric patients. Our study developed a multimodal MRI radiomics model to predict epilepsy in pLGGs patients, achieving an AUC of 0.969. The integration of multi-sequence MRI data significantly improved predictive performance, with Stochastic Gradient Descent (SGD) classifier showing robust results (sensitivity: 0.882, specificity: 0.956). Our model can accurately predict whether pLGGs patients have tumor-related epilepsy, which could guide surgical decision-making. Future studies should focus on similarly standardized preoperative evaluations in pediatric epilepsy centers to increase training data and enhance the generalizability of the model.

A Deep Learning Vision-Language Model for Diagnosing Pediatric Dental Diseases

Pham, T.

medrxiv logopreprintMay 22 2025
This study proposes a deep learning vision-language model for the automated diagnosis of pediatric dental diseases, with a focus on differentiating between caries and periapical infections. The model integrates visual features extracted from panoramic radiographs using methods of non-linear dynamics and textural encoding with textual descriptions generated by a large language model. These multimodal features are concatenated and used to train a 1D-CNN classifier. Experimental results demonstrate that the proposed model outperforms conventional convolutional neural networks and standalone language-based approaches, achieving high accuracy (90%), sensitivity (92%), precision (92%), and an AUC of 0.96. This work highlights the value of combining structured visual and textual representations in improving diagnostic accuracy and interpretability in dental radiology. The approach offers a promising direction for the development of context-aware, AI-assisted diagnostic tools in pediatric dental care.

An Interpretable Deep Learning Approach for Autism Spectrum Disorder Detection in Children Using NASNet-Mobile.

K VRP, Hima Bindu C, Devi KRM

pubmed logopapersMay 22 2025
Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder featuring impaired social interactions and communication abilities engaging the individuals in a restrictive or repetitive behaviour. Though incurable early detection and intervention can reduce the severity of symptoms. Structural magnetic resonance imaging (sMRI) can improve diagnostic accuracy, facilitating early diagnosis to offer more tailored care. With the emergence of deep learning (DL), neuroimaging-based approaches for ASD diagnosis have been focused. However, many existing models lack interpretability of their decisions for diagnosis. The prime objective of this work is to perform ASD classification precisely and to interpret the classification process in a better way so as to discern the major features that are appropriate for the prediction of disorder. The proposed model employs neural architecture search network - mobile(NASNet-Mobile) model for ASD detection, which is integrated with an explainable artificial intelligence (XAI) technique called local interpretable model-agnostic explanations (LIME) for increased transparency of ASD classification. The model is trained on sMRI images of two age groups taken from autism brain imaging data exchange-I (ABIDE-I) dataset. The proposed model yielded accuracy of 0.9607, F1-score of 0.9614, specificity of 0.9774, sensitivity of 0.9451, negative predicted value (NPV) of 0.9429, positive predicted value (PPV) of 0.9783 and the diagnostic odds ratio of 745.59 for 2 to 11 years age group compared to 12 to 18 years group. These results are superior compared to other state of the art models Inception v3 and SqueezeNet.

An X-ray bone age assessment method for hands and wrists of adolescents in Western China based on feature fusion deep learning models.

Wang YH, Zhou HM, Wan L, Guo YC, Li YZ, Liu TA, Guo JX, Li DY, Chen T

pubmed logopapersMay 22 2025
The epiphyses of the hand and wrist serve as crucial indicators for assessing skeletal maturity in adolescents. This study aimed to develop a deep learning (DL) model for bone age (BA) assessment using hand and wrist X-ray images, addressing the challenge of classifying BA in adolescents. The results of this DL-based classification were then compared and analyzed with those obtained from manual assessment. A retrospective analysis was conducted on 688 hand and wrist X-ray images of adolescents aged 11.00-23.99 years from western China, which were randomly divided into training set, validation set and test set. The BA assessment results were initially analyzed and compared using four DL network models: InceptionV3, InceptionV3 + SE + Sex, InceptionV3 + Bilinear and InceptionV3 + Bilinear. + SE + Sex, to identify the DL model with the best classification performance. Subsequently, the results of the top-performing model were compared with those of manual classification. The study findings revealed that the InceptionV3 + Bilinear + SE + Sex model exhibited the best performance, achieving classification accuracies of 96.15% and 90.48% for the training and test set, respectively. Furthermore, based on the InceptionV3 + Bilinear + SE + Sex model, classification accuracies were calculated for four age groups (< 14.0 years, 14.0 years ≤ age < 16.0 years, 16.0 years ≤ age < 18.0 years, ≥ 18.0 years), with notable accuracies of 100% for the age groups 16.0 years ≤ age < 18.0 years and ≥ 18.0 years. The BA classification, utilizing the feature fusion DL network model, holds significant reference value for determining the age of criminal responsibility of adolescents, particularly at the critical legal age boundaries of 14.0, 16.0, and 18.0 years.

Deep Learning-Based Multimodal Feature Interaction-Guided Fusion: Enhancing the Evaluation of EGFR in Advanced Lung Adenocarcinoma.

Xu J, Feng B, Chen X, Wu F, Liu Y, Yu Z, Lu S, Duan X, Chen X, Li K, Zhang W, Dai X

pubmed logopapersMay 22 2025
The aim of this study is to develop a deep learning-based multimodal feature interaction-guided fusion (DL-MFIF) framework that integrates macroscopic information from computed tomography (CT) images with microscopic information from whole-slide images (WSIs) to predict the epidermal growth factor receptor (EGFR) mutations of primary lung adenocarcinoma in patients with advanced-stage disease. Data from 396 patients with lung adenocarcinoma across two medical institutions were analyzed. The data from 243 cases were divided into a training set (n=145) and an internal validation set (n=98) in a 6:4 ratio, and data from an additional 153 cases from another medical institution were included as an external validation set. All cases included CT scan images and WSIs. To integrate multimodal information, we developed the DL-MFIF framework, which leverages deep learning techniques to capture the interactions between radiomic macrofeatures derived from CT images and microfeatures obtained from WSIs. Compared to other classification models, the DL-MFIF model achieved significantly higher area under the curve (AUC) values. Specifically, the model outperformed others on both the internal validation set (AUC=0.856, accuracy=0.750) and the external validation set (AUC=0.817, accuracy=0.708). Decision curve analysis (DCA) demonstrated that the model provided superior net benefits(range 0.15-0.87). Delong's test for external validation confirmed the statistical significance of the results (P<0.05). The DL-MFIF model demonstrated excellent performance in evaluating and distinguishing the EGFR in patients with advanced lung adenocarcinoma. This model effectively aids radiologists in accurately classifying EGFR mutations in patients with primary lung adenocarcinoma, thereby improving treatment outcomes for this population.

A Novel Dynamic Neural Network for Heterogeneity-Aware Structural Brain Network Exploration and Alzheimer's Disease Diagnosis.

Cui W, Leng Y, Peng Y, Bai C, Li L, Jiang X, Yuan G, Zheng J

pubmed logopapersMay 22 2025
Heterogeneity is a fundamental characteristic of brain diseases, distinguished by variability not only in brain atrophy but also in the complexity of neural connectivity and brain networks. However, existing data-driven methods fail to provide a comprehensive analysis of brain heterogeneity. Recently, dynamic neural networks (DNNs) have shown significant advantages in capturing sample-wise heterogeneity. Therefore, in this article, we first propose a novel dynamic heterogeneity-aware network (DHANet) to identify critical heterogeneous brain regions, explore heterogeneous connectivity between them, and construct a heterogeneous-aware structural brain network (HGA-SBN) using structural magnetic resonance imaging (sMRI). Specifically, we develop a 3-D dynamic convmixer to extract abundant heterogeneous features from sMRI first. Subsequently, the critical brain atrophy regions are identified by dynamic prototype learning with embedding the hierarchical brain semantic structure. Finally, we employ a joint dynamic edge-correlation (JDE) modeling approach to construct the heterogeneous connectivity between these regions and analyze the HGA-SBN. To evaluate the effectiveness of the DHANet, we conduct elaborate experiments on three public datasets and the method achieves state-of-the-art (SOTA) performance on two classification tasks.

Mammography-based artificial intelligence for breast cancer detection, diagnosis, and BI-RADS categorization using multi-view and multi-level convolutional neural networks.

Tan H, Wu Q, Wu Y, Zheng B, Wang B, Chen Y, Du L, Zhou J, Fu F, Guo H, Fu C, Ma L, Dong P, Xue Z, Shen D, Wang M

pubmed logopapersMay 21 2025
We developed an artificial intelligence system (AIS) using multi-view multi-level convolutional neural networks for breast cancer detection, diagnosis, and BI-RADS categorization support in mammography. Twenty-four thousand eight hundred sixty-six breasts from 12,433 Asian women between August 2012 and December 2018 were enrolled. The study consisted of three parts: (1) evaluation of AIS performance in malignancy diagnosis; (2) stratified analysis of BI-RADS 3-4 subgroups with AIS; and (3) reassessment of BI-RADS 0 breasts with AIS assistance. We further evaluate AIS by conducting a counterbalance-designed AI-assisted study, where ten radiologists read 1302 cases with/without AIS assistance. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy, and F1 score were measured. The AIS yielded AUC values of 0.995, 0.933, and 0.947 for malignancy diagnosis in the validation set, testing set 1, and testing set 2, respectively. Within BI-RADS 3-4 subgroups with pathological results, AIS downgraded 83.1% of false-positives into benign groups, and upgraded 54.1% of false-negatives into malignant groups. AIS also successfully assisted radiologists in identifying 7 out of 43 malignancies initially diagnosed with BI-RADS 0, with a specificity of 96.7%. In the counterbalance-designed AI-assisted study, the average AUC across ten readers significantly improved with AIS assistance (p = 0.001). AIS can accurately detect and diagnose breast cancer on mammography and further serve as a supportive tool for BI-RADS categorization. An AI risk assessment tool employing deep learning algorithms was developed and validated for enhancing breast cancer diagnosis from mammograms, to improve risk stratification accuracy, particularly in patients with dense breasts, and serve as a decision support aid for radiologists. The false positive and negative rates of mammography diagnosis remain high. The AIS can yield a high AUC for malignancy diagnosis. The AIS is important in stratifying BI-RADS categorization.

Performance of multimodal prediction models for intracerebral hemorrhage outcomes using real-world data.

Matsumoto K, Suzuki M, Ishihara K, Tokunaga K, Matsuda K, Chen J, Yamashiro S, Soejima H, Nakashima N, Kamouchi M

pubmed logopapersMay 21 2025
We aimed to develop and validate multimodal models integrating computed tomography (CT) images, text and tabular clinical data to predict poor functional outcomes and in-hospital mortality in patients with intracerebral hemorrhage (ICH). These models were designed to assist non-specialists in emergency settings with limited access to stroke specialists. A retrospective analysis of 527 patients with ICH admitted to a Japanese tertiary hospital between April 2019 and February 2022 was conducted. Deep learning techniques were used to extract features from three-dimensional CT images and unstructured data, which were then combined with tabular data to develop an L1-regularized logistic regression model to predict poor functional outcomes (modified Rankin scale score 3-6) and in-hospital mortality. The model's performance was evaluated by assessing discrimination metrics, calibration plots, and decision curve analysis (DCA) using temporal validation data. The multimodal model utilizing both imaging and text data, such as medical interviews, exhibited the highest performance in predicting poor functional outcomes. In contrast, the model that combined imaging with tabular data, including physiological and laboratory results, demonstrated the best predictive performance for in-hospital mortality. These models exhibited high discriminative performance, with areas under the receiver operating curve (AUROCs) of 0.86 (95% CI: 0.79-0.92) and 0.91 (95% CI: 0.84-0.96) for poor functional outcomes and in-hospital mortality, respectively. Calibration was satisfactory for predicting poor functional outcomes, but requires refinement for mortality prediction. The models performed similar to or better than conventional risk scores, and DCA curves supported their clinical utility. Multimodal prediction models have the potential to aid non-specialists in making informed decisions regarding ICH cases in emergency departments as part of clinical decision support systems. Enhancing real-world data infrastructure and improving model calibration are essential for successful implementation in clinical practice.

Update on the detection of frailty in older adults: a multicenter cohort machine learning-based study protocol.

Fernández-Carnero S, Martínez-Pozas O, Pecos-Martín D, Pardo-Gómez A, Cuenca-Zaldívar JN, Sánchez-Romero EA

pubmed logopapersMay 21 2025
This study aims to investigate the relationship between muscle activation variables assessed via ultrasound and the comprehensive assessment of geriatric patients, as well as to analyze ultrasound images to determine their correlation with morbimortality factors in frail patients. The present cohort study will be conducted in 500 older adults diagnosed with frailty. A multicenter study will be conducted among the day care centers and nursing homes. This will be achieved through the evaluation of frail older adults via instrumental and functional tests, along with specific ultrasound images to study sarcopenia and nutrition, followed by a detailed analysis of the correlation between all collected variables. This study aims to investigate the correlation between ultrasound-assessed muscle activation variables and the overall health of geriatric patients. It addresses the limitations of previous research by including a large sample size of 500 patients and measuring various muscle parameters beyond thickness. Additionally, it aims to analyze ultrasound images to identify markers associated with higher risk of complications in frail patients. The study involves frail older adults undergoing functional tests and specific ultrasound examinations. A comprehensive analysis of functional, ultrasound, and nutritional variables will be conducted to understand their correlation with overall health and risk of complications in frail older patients. The study was approved by the Research Ethics Committee of the Hospital Universitario Puerta de Hierro, Madrid, Spain (Act nº 18/2023). In addition, the study was registered with https://clinicaltrials.gov/ (NCT06218121).
Page 74 of 100993 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.