Sort by:
Page 74 of 3613608 results

Establishing a Deep Learning Model That Integrates Pretreatment and Midtreatment Computed Tomography to Predict Treatment Response in Non-Small Cell Lung Cancer.

Chen X, Meng F, Zhang P, Wang L, Yao S, An C, Li H, Zhang D, Li H, Li J, Wang L, Liu Y

pubmed logopapersAug 1 2025
Patients with identical stages or similar tumor volumes can vary significantly in their responses to radiation therapy (RT) due to individual characteristics, making personalized RT for non-small cell lung cancer (NSCLC) challenging. This study aimed to develop a deep learning model by integrating pretreatment and midtreatment computed tomography (CT) to predict the treatment response in NSCLC patients. We retrospectively collected data from 168 NSCLC patients across 3 hospitals. Data from Shanghai General Hospital (SGH, 35 patients) and Shanxi Cancer Hospital (SCH, 93 patients) were used for model training and internal validation, while data from Linfen Central Hospital (LCH, 40 patients) were used for external validation. Deep learning, radiomics, and clinical features were extracted to establish a varying time interval long short-term memory network for response prediction. Furthermore, we derived a model-deduced personalize dose escalation (DE) for patients predicted to have suboptimal gross tumor volume regression. The area under the receiver operating characteristic curve (AUC) and predicted absolute error were used to evaluate the predictive Response Evaluation Criteria in Solid Tumors classification and the proportion of gross tumor volume residual. DE was calculated as the biological equivalent dose using an /α/β ratio of 10 Gy. The model using only pretreatment CT achieved the highest AUC of 0.762 and 0.687 in internal and external validation respectively, whereas the model integrating both pretreatment and midtreatment CT achieved AUC of 0.869 and 0.798, with predicted absolute error of 0.137 and 0.185, respectively. We performed personalized DE for 29 patients. Their original biological equivalent dose was approximately 72 Gy, within the range of 71.6 Gy to 75 Gy. DE ranged from 77.7 to 120 Gy for 29 patients, with 17 patients exceeding 100 Gy and 8 patients reaching the model's preset upper limit of 120 Gy. Combining pretreatment and midtreatment CT enhances prediction performance for RT response and offers a promising approach for personalized DE in NSCLC.

Moving Beyond CT Body Composition Analysis: Using Style Transfer for Bringing CT-Based Fully-Automated Body Composition Analysis to T2-Weighted MRI Sequences.

Haubold J, Pollok OB, Holtkamp M, Salhöfer L, Schmidt CS, Bojahr C, Straus J, Schaarschmidt BM, Borys K, Kohnke J, Wen Y, Opitz M, Umutlu L, Forsting M, Friedrich CM, Nensa F, Hosch R

pubmed logopapersAug 1 2025
Deep learning for body composition analysis (BCA) is gaining traction in clinical research, offering rapid and automated ways to measure body features like muscle or fat volume. However, most current methods prioritize computed tomography (CT) over magnetic resonance imaging (MRI). This study presents a deep learning approach for automatic BCA using MR T2-weighted sequences. Initial BCA segmentations (10 body regions and 4 body parts) were generated by mapping CT segmentations from body and organ analysis (BOA) model to synthetic MR images created using an in-house trained CycleGAN. In total, 30 synthetic data pairs were used to train an initial nnU-Net V2 in 3D, and this preliminary model was then applied to segment 120 real T2-weighted MRI sequences from 120 patients (46% female) with a median age of 56 (interquartile range, 17.75), generating early segmentation proposals. These proposals were refined by human annotators, and nnU-Net V2 2D and 3D models were trained using 5-fold cross-validation on this optimized dataset of real MR images. Performance was evaluated using Sørensen-Dice, Surface Dice, and Hausdorff Distance metrics including 95% confidence intervals for cross-validation and ensemble models. The 3D ensemble segmentation model achieved the highest Dice scores for the body region classes: bone 0.926 (95% confidence interval [CI], 0.914-0.937), muscle 0.968 (95% CI, 0.961-0.975), subcutaneous fat 0.98 (95% CI, 0.971-0.986), nervous system 0.973 (95% CI, 0.965-0.98), thoracic cavity 0.978 (95% CI, 0.969-0.984), abdominal cavity 0.989 (95% CI, 0.986-0.991), mediastinum 0.92 (95% CI, 0.901-0.936), pericardium 0.945 (95% CI, 0.924-0.96), brain 0.966 (95% CI, 0.927-0.989), and glands 0.905 (95% CI, 0.886-0.921). Furthermore, body part 2D ensemble model reached the highest Dice scores for all labels: arms 0.952 (95% CI, 0.937-0.965), head + neck 0.965 (95% CI, 0.953-0.976), legs 0.978 (95% CI, 0.968-0.988), and torso 0.99 (95% CI, 0.988-0.991). The overall average Dice across body parts (2D = 0.971, 3D = 0.969, P = ns) and body regions (2D = 0.935, 3D = 0.955, P < 0.001) ensemble models indicates stable performance across all classes. The presented approach facilitates efficient and automated extraction of BCA parameters from T2-weighted MRI sequences, providing precise and detailed body composition information across various regions and body parts.

Explainable multimodal deep learning for predicting thyroid cancer lateral lymph node metastasis using ultrasound imaging.

Shen P, Yang Z, Sun J, Wang Y, Qiu C, Wang Y, Ren Y, Liu S, Cai W, Lu H, Yao S

pubmed logopapersAug 1 2025
Preoperative prediction of lateral lymph node metastasis is clinically crucial for guiding surgical strategy and prognosis assessment, yet precise prediction methods are lacking. We therefore develop Lateral Lymph Node Metastasis Network (LLNM-Net), a bidirectional-attention deep-learning model that fuses multimodal data (preoperative ultrasound images, radiology reports, pathological findings, and demographics) from 29,615 patients and 9836 surgical cases across seven centers. Integrating nodule morphology and position with clinical text, LLNM-Net achieves an Area Under the Curve (AUC) of 0.944 and 84.7% accuracy in multicenter testing, outperforming human experts (64.3% accuracy) and surpassing previous models by 7.4%. Here we show tumors within 0.25 cm of the thyroid capsule carry >72% metastasis risk, with middle and upper lobes as high-risk regions. Leveraging location, shape, echogenicity, margins, demographics, and clinician inputs, LLNM-Net further attains an AUC of 0.983 for identifying high-risk patients. The model is thus a promising for tool for preoperative screening and risk stratification.

Transparent brain tumor detection using DenseNet169 and LIME.

Abraham LA, Palanisamy G, Veerapu G

pubmed logopapersAug 1 2025
A crucial area of research in the field of medical imaging is that of brain tumor classification, which greatly aids diagnosis and facilitates treatment planning. This paper proposes DenseNet169-LIME-TumorNet, a model based on deep learning and an integrated combination of DenseNet169 with LIME to boost the performance of brain tumor classification and its interpretability. The model was trained and evaluated on the publicly available Brain Tumor MRI Dataset containing 2,870 images spanning three tumor types. Dense169-LIME-TumorNet achieves a classification accuracy of 98.78%, outperforming widely used architectures including Inception V3, ResNet50, MobileNet V2, EfficientNet variants, and other DenseNet configurations. The integration of LIME provides visual explanations that enhance transparency and reliability in clinical decision-making. Furthermore, the model demonstrates minimal computational overhead, enabling faster inference and deployment in resource-constrained clinical environments, thereby highlighting its practical utility for real-time diagnostic support. Work in the future should run towards creating generalization through the adoption of a multi-modal learning approach, hybrid deep learning development, and real-time application development for AI-assisted diagnosis.

Development and Validation of a Brain Aging Biomarker in Middle-Aged and Older Adults: Deep Learning Approach.

Li Z, Li J, Li J, Wang M, Xu A, Huang Y, Yu Q, Zhang L, Li Y, Li Z, Wu X, Bu J, Li W

pubmed logopapersAug 1 2025
Precise assessment of brain aging is crucial for early detection of neurodegenerative disorders and aiding clinical practice. Existing magnetic resonance imaging (MRI)-based methods excel in this task, but they still have room for improvement in capturing local morphological variations across brain regions and preserving the inherent neurobiological topological structures. To develop and validate a deep learning framework incorporating both connectivity and complexity for accurate brain aging estimation, facilitating early identification of neurodegenerative diseases. We used 5889 T1-weighted MRI scans from the Alzheimer's Disease Neuroimaging Initiative dataset. We proposed a novel brain vision graph neural network (BVGN), incorporating neurobiologically informed feature extraction modules and global association mechanisms to provide a sensitive deep learning-based imaging biomarker. Model performance was evaluated using mean absolute error (MAE) against benchmark models, while generalization capability was further validated on an external UK Biobank dataset. We calculated the brain age gap across distinct cognitive states and conducted multiple logistic regressions to compare its discriminative capacity against conventional cognitive-related variables in distinguishing cognitively normal (CN) and mild cognitive impairment (MCI) states. Longitudinal track, Cox regression, and Kaplan-Meier plots were used to investigate the longitudinal performance of the brain age gap. The BVGN model achieved an MAE of 2.39 years, surpassing current state-of-the-art approaches while obtaining an interpretable saliency map and graph theory supported by medical evidence. Furthermore, its performance was validated on the UK Biobank cohort (N=34,352) with an MAE of 2.49 years. The brain age gap derived from BVGN exhibited significant difference across cognitive states (CN vs MCI vs Alzheimer disease; P<.001), and demonstrated the highest discriminative capacity between CN and MCI than general cognitive assessments, brain volume features, and apolipoprotein E4 carriage (area under the receiver operating characteristic curve [AUC] of 0.885 vs AUC ranging from 0.646 to 0.815). Brain age gap exhibited clinical feasibility combined with Functional Activities Questionnaire, with improved discriminative capacity in models achieving lower MAEs (AUC of 0.945 vs 0.923 and 0.911; AUC of 0.935 vs 0.900 and 0.881). An increasing brain age gap identified by BVGN may indicate underlying pathological changes in the CN to MCI progression, with each unit increase linked to a 55% (hazard ratio=1.55, 95% CI 1.13-2.13; P=.006) higher risk of cognitive decline in individuals who are CN and a 29% (hazard ratio=1.29, 95% CI 1.09-1.51; P=.002) increase in individuals with MCI. BVGN offers a precise framework for brain aging assessment, demonstrates strong generalization on an external large-scale dataset, and proposes novel interpretability strategies to elucidate multiregional cooperative aging patterns. The brain age gap derived from BVGN is validated as a sensitive biomarker for early identification of MCI and predicting cognitive decline, offering substantial potential for clinical applications.

Deep learning-based super-resolution US radiomics to differentiate testicular seminoma and non-seminoma: an international multicenter study.

Zhang Y, Lu S, Peng C, Zhou S, Campo I, Bertolotto M, Li Q, Wang Z, Xu D, Wang Y, Xu J, Wu Q, Hu X, Zheng W, Zhou J

pubmed logopapersAug 1 2025
Subvariants of testicular germ cell tumor (TGCT) significantly affect therapeutic strategies and patient prognosis. However, preoperatively distinguishing seminoma (SE) from non-seminoma (n-SE) remains a challenge. This study aimed to evaluate the performance of a deep learning-based super-resolution (SR) US radiomics model for SE/n-SE differentiation. This international multicenter retrospective study recruited patients with confirmed TGCT between 2015 and 2023. A pre-trained SR reconstruction algorithm was applied to enhance native resolution (NR) images. NR and SR radiomics models were constructed, and the superior model was then integrated with clinical features to construct clinical-radiomics models. Diagnostic performance was evaluated by ROC analysis (AUC) and compared with radiologists' assessments using the DeLong test. A total of 486 male patients were enrolled for training (n = 338), domestic (n = 92), and international (n = 59) validation sets. The SR radiomics model achieved AUCs of 0.90, 0.82, and 0.91, respectively, in the training, domestic, and international validation sets, significantly surpassing the NR model (p < 0.001, p = 0.031, and p = 0.001, respectively). The clinical-radiomics model exhibited a significantly higher across both domestic and international validation sets compared to the SR radiomics model alone (0.95 vs 0.82, p = 0.004; 0.97 vs 0.91, p = 0.031). Moreover, the clinical-radiomics model surpassed the performance of experienced radiologists in both domestic (AUC, 0.95 vs 0.85, p = 0.012) and international (AUC, 0.97 vs 0.77, p < 0.001) validation cohorts. The SR-based clinical-radiomics model can effectively differentiate between SE and n-SE. This international multicenter study demonstrated that a radiomics model of deep learning-based SR reconstructed US images enabled effective differentiation between SE and n-SE. Clinical parameters and radiologists' assessments exhibit limited diagnostic accuracy for SE/n-SE differentiation in TGCT. Based on scrotal US images of TGCT, the SR radiomics models performed better than the NR radiomics models. The SR-based clinical-radiomics model outperforms both the radiomics model and radiologists' assessment, enabling accurate, non-invasive preoperative differentiation between SE and n-SE.

Utility of an artificial intelligence-based lung CT airway model in the quantitative evaluation of large and small airway lesions in patients with chronic obstructive pulmonary disease.

Liu Z, Li J, Li B, Yi G, Pang S, Zhang R, Li P, Yin Z, Zhang J, Lv B, Yan J, Ma J

pubmed logopapersAug 1 2025
Accurate quantification of the extent of bronchial damage across various airway levels in chronic obstructive pulmonary disease (COPD) remains a challenge. In this study, artificial intelligence (AI) was employed to develop an airway segmentation model to investigate the morphological changes of the central and peripheral airways in COPD patients and the effects of these airway changes on pulmonary function classification and acute COPD exacerbations. Clinical data from a total of 340 patients with COPD and 73 healthy volunteers were collected and compiled. An AI-driven airway segmentation model was constructed using Convolutional Neural Regressor (CNR) and Airway Transfer Network (ATN) algorithms. The efficacy of the model was evaluated through support vector machine (SVM) and random forest regression approaches. The area under the receiver operating characteristic (ROC) curve (AUC) of the SVM in evaluating the COPD airway segmentation model was 0.96, with a sensitivity of 97% and a specificity of 92%, however, the AUC value of the SVM was 0.81 when it was replaced the healthy group by non-COPD outpatients. Compared with the healthy group, the grade and the total number of airway segmentation were decreased and the diameters of the right main bronchus and bilateral lobar bronchi of patients with COPD were smaller and the airway walls were thinner (all P < 0.01). However, the diameters of the subsegmental and small airway bronchi were increased, and airway walls were thickened, and the arc lengths were shorter ( all P < 0.01), especially in patients with severe COPD (all P < 0.05). Correlation and regression analysis showed that FEV1%pre was positively correlated with the diameters and airway wall thickness of the main and lobar airway, and the arc lengths of small airway bronchi (all P < 0.05). Airway wall thickness of the subsegment and small airway were found to have the greatest impact on the frequency of COPD exacerbations. Artificial intelligence lung CT airway segmentation model is a non-invasive quantitative tool for measuring chronic obstructive pulmonary disease. The main changes in COPD patients are that the central airway diameter becomes narrower and the thickness becomes thinner. The arc length of the peripheral airway becomes shorter, and the diameter and airway wall thickness become larger, which is more obvious in severe patients. Pulmonary function classification and small and medium airway dysfunction are also affected by the diameter, thickness and arc length of large and small airways. Small airway remodeling is more significant in acute exacerbations of COPD.

A brain tumor segmentation enhancement in MRI images using U-Net and transfer learning.

Pourmahboubi A, Arsalani Saeed N, Tabrizchi H

pubmed logopapersJul 31 2025
This paper presents a novel transfer learning approach for segmenting brain tumors in Magnetic Resonance Imaging (MRI) images. Using Fluid-Attenuated Inversion Recovery (FLAIR) abnormality segmentation masks and MRI scans from The Cancer Genome Atlas's (TCGA's) lower-grade glioma collection, our proposed approach uses a VGG19-based U-Net architecture with fixed pretrained weights. The experimental findings, which show an Area Under the Curve (AUC) of 0.9957, F1-Score of 0.9679, Dice Coefficient of 0.9679, Precision of 0.9541, Recall of 0.9821, and Intersection-over-Union (IoU) of 0.9378, show how effective the proposed framework is. According to these metrics, the VGG19-powered U-Net outperforms not only the conventional U-Net model but also other variants that were compared and used different pre-trained backbones in the U-Net encoder.Clinical trial registrationNot applicable as this study utilized existing publicly available dataset and did not involve a clinical trial.

Quantifying the Trajectory of Percutaneous Endoscopic Lumbar Discectomy in 3D Lumbar Models Based on Automated MR Image Segmentation-A Cross-Sectional Study.

Su Z, Wang Y, Huang C, He Q, Lu J, Liu Z, Zhang Y, Zhao Q, Zhang Y, Cai J, Pang S, Yuan Z, Chen Z, Chen T, Lu H

pubmed logopapersJul 31 2025
Creating a 3D lumbar model and planning a personalized puncture trajectory has an advantage in establishing the working channel for percutaneous endoscopic lumbar discectomy (PELD). However, existing 3D lumbar models, which seldom include lumbar nerves and dural sac reconstructions, primarily depend on CT images for preoperative trajectory planning. Therefore, our study aims to further investigate the relationship between different virtual working channels and the 3D lumbar model, which includes automated MR image segmentation of lumbar bone, nerves, and dural sac at the L4/L5 level. Preoperative lumbar MR images of 50 patients with L4/L5 lumbar disc herniation were collected from a teaching hospital between March 2020 and July 2020. Automated MR image segmentation was initially used to create a 3D model of the lumbar spine, including the L4 vertebrae, L5 vertebrae, intervertebral disc, L4 nerves, dural sac, and skin. Thirty were then randomly chosen from the segmentation results to clarify the relationship between various virtual working channels and the lumbar 3D model. A bivariate Spearman's rank correlation analysis was used in this study. Preoperative MR images of 50 patients (34 males, mean age 45.6 ± 6 years) were used to train and validate the automated segmentation model, which had mean Dice scores of 0.906, 0.891, 0.896, 0.695, 0.892, and 0.892 for the L4 vertebrae, L5 vertebrae, intervertebral disc, L4 nerves, dural sac, and skin, respectively. With an increase in the coronal plane angle (CPA), there was a reduction in the intersection volume involving the L4 nerves and atypical structures. Conversely, the intersection volume encompassing the dural sac, L4 inferior articular process, and L5 superior articular process increased; the total intersection volume showed a fluctuating pattern: it initially decreased, followed by an increase, and then decreased once more. As the cross-section angle (CSA) increased, there was a rise in the intersection volume of both the L4 nerves and the dural sac; the intersection volume involving the L4 inferior articular process grew while that of the L5 superior articular process diminished; the overall intersection volume and the intersection volume of atypical structures initially decreased, followed by an increase. In terms of regularity, the optimal angles for L4/L5 PELD are a CSA of 15° and a CPA of 15°-20°, minimizing harm to the vertebral bones, facet joint, spinal nerves, and dural sac. Additionally, our 3D preoperative planning method could enhance puncture trajectories for individual patients, potentially advancing surgical navigation, robots, and artificial intelligence in PELD procedures.

An interpretable CT-based machine learning model for predicting recurrence risk in stage II colorectal cancer.

Wu Z, Gong L, Luo J, Chen X, Yang F, Wen J, Hao Y, Wang Z, Gu R, Zhang Y, Liao H, Wen G

pubmed logopapersJul 31 2025
This study aimed to develop an interpretable 3-year disease-free survival risk prediction tool to stratify patients with stage II colorectal cancer (CRC) by integrating CT images and clinicopathological factors. A total of 769 patients with pathologically confirmed stage II CRC and disease-free survival (DFS) follow-up information were recruited from three medical centers and divided into training (n = 442), test (n = 190), and validation cohorts (n = 137). CT-based tumor radiomics features were extracted, selected, and used to calculate a Radscore. A combined model was developed using artificial neural network (ANN) algorithm, by integrating the Radscore with significant clinicoradiological factors to classify patients into high- and low-risk groups. Model performance was assessed using the area under the curve (AUC), and feature contributions were qualified using the Shapley additive explanation (SHAP) algorithm. Kaplan-Meier survival analysis revealed the prognostic stratification value of the risk groups. Fourteen radiomics features and five clinicoradiological factors were selected to construct the radiomics and clinicoradiological models, respectively. The combined model demonstrated optimal performance, with AUCs of 0.811 and 0.846 in the test and validation cohorts, respectively. Kaplan-Meier curves confirmed effective patient stratification (p < 0.001) in both test and validation cohorts. A high Radscore, rough intestinal outer edge, and advanced age were identified as key prognostic risk factors using the SHAP. The combined model effectively stratified patients with stage II CRC into different prognostic risk groups, aiding clinical decision-making. Integrating CT images with clinicopathological information can facilitate the identification of patients with stage II CRC who are most likely to benefit from adjuvant chemotherapy. The effectiveness of adjuvant chemotherapy for stage II colorectal cancer remains debated. A combined model successfully identified high-risk stage II colorectal cancer patients. Shapley additive explanations enhance the interpretability of the model's predictions.
Page 74 of 3613608 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.