Transparent brain tumor detection using DenseNet169 and LIME.
Authors
Affiliations (2)
Affiliations (2)
- School of Electronics Engineering, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India.
- School of Electronics Engineering, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India. [email protected].
Abstract
A crucial area of research in the field of medical imaging is that of brain tumor classification, which greatly aids diagnosis and facilitates treatment planning. This paper proposes DenseNet169-LIME-TumorNet, a model based on deep learning and an integrated combination of DenseNet169 with LIME to boost the performance of brain tumor classification and its interpretability. The model was trained and evaluated on the publicly available Brain Tumor MRI Dataset containing 2,870 images spanning three tumor types. Dense169-LIME-TumorNet achieves a classification accuracy of 98.78%, outperforming widely used architectures including Inception V3, ResNet50, MobileNet V2, EfficientNet variants, and other DenseNet configurations. The integration of LIME provides visual explanations that enhance transparency and reliability in clinical decision-making. Furthermore, the model demonstrates minimal computational overhead, enabling faster inference and deployment in resource-constrained clinical environments, thereby highlighting its practical utility for real-time diagnostic support. Work in the future should run towards creating generalization through the adoption of a multi-modal learning approach, hybrid deep learning development, and real-time application development for AI-assisted diagnosis.