Sort by:
Page 7 of 982 results

Federated Learning for Renal Tumor Segmentation and Classification on Multi-Center MRI Dataset.

Nguyen DT, Imami M, Zhao LM, Wu J, Borhani A, Mohseni A, Khunte M, Zhong Z, Shi V, Yao S, Wang Y, Loizou N, Silva AC, Zhang PJ, Zhang Z, Jiao Z, Kamel I, Liao WH, Bai H

pubmed logopapersMay 19 2025
Deep learning (DL) models for accurate renal tumor characterization may benefit from multi-center datasets for improved generalizability; however, data-sharing constraints necessitate privacy-preserving solutions like federated learning (FL). To assess the performance and reliability of FL for renal tumor segmentation and classification in multi-institutional MRI datasets. Retrospective multi-center study. A total of 987 patients (403 female) from six hospitals were included for analysis. 73% (723/987) had malignant renal tumors, primarily clear cell carcinoma (n = 509). Patients were split into training (n = 785), validation (n = 104), and test (n = 99) sets, stratified across three simulated institutions. MRI was performed at 1.5 T and 3 T using T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (CE-T1WI) sequences. FL and non-FL approaches used nnU-Net for tumor segmentation and ResNet for its classification. FL-trained models across three simulated institutional clients with central weight aggregation, while the non-FL approach used centralized training on the full dataset. Segmentation was evaluated using Dice coefficients, and classification between malignant and benign lesions was assessed using accuracy, sensitivity, specificity, and area under the curves (AUCs). FL and non-FL performance was compared using the Wilcoxon test for segmentation Dice and Delong's test for AUC (p < 0.05). No significant difference was observed between FL and non-FL models in segmentation (Dice: 0.43 vs. 0.45, p = 0.202) or classification (AUC: 0.69 vs. 0.64, p = 0.959) on the test set. For classification, no significant difference was observed between the models in accuracy (p = 0.912), sensitivity (p = 0.862), or specificity (p = 0.847) on the test set. FL demonstrated comparable performance to non-FL approaches in renal tumor segmentation and classification, supporting its potential as a privacy-preserving alternative for multi-institutional DL models. 4. Stage 2.

A Comprehensive Review of Techniques, Algorithms, Advancements, Challenges, and Clinical Applications of Multi-modal Medical Image Fusion for Improved Diagnosis

Muhammad Zubair, Muzammil Hussai, Mousa Ahmad Al-Bashrawi, Malika Bendechache, Muhammad Owais

arxiv logopreprintMay 18 2025
Multi-modal medical image fusion (MMIF) is increasingly recognized as an essential technique for enhancing diagnostic precision and facilitating effective clinical decision-making within computer-aided diagnosis systems. MMIF combines data from X-ray, MRI, CT, PET, SPECT, and ultrasound to create detailed, clinically useful images of patient anatomy and pathology. These integrated representations significantly advance diagnostic accuracy, lesion detection, and segmentation. This comprehensive review meticulously surveys the evolution, methodologies, algorithms, current advancements, and clinical applications of MMIF. We present a critical comparative analysis of traditional fusion approaches, including pixel-, feature-, and decision-level methods, and delves into recent advancements driven by deep learning, generative models, and transformer-based architectures. A critical comparative analysis is presented between these conventional methods and contemporary techniques, highlighting differences in robustness, computational efficiency, and interpretability. The article addresses extensive clinical applications across oncology, neurology, and cardiology, demonstrating MMIF's vital role in precision medicine through improved patient-specific therapeutic outcomes. Moreover, the review thoroughly investigates the persistent challenges affecting MMIF's broad adoption, including issues related to data privacy, heterogeneity, computational complexity, interpretability of AI-driven algorithms, and integration within clinical workflows. It also identifies significant future research avenues, such as the integration of explainable AI, adoption of privacy-preserving federated learning frameworks, development of real-time fusion systems, and standardization efforts for regulatory compliance.

Computational modeling of breast tissue mechanics and machine learning in cancer diagnostics: enhancing precision in risk prediction and therapeutic strategies.

Ashi L, Taurin S

pubmed logopapersMay 17 2025
Breast cancer remains a significant global health issue. Despite advances in detection and treatment, its complexity is driven by genetic, environmental, and structural factors. Computational methods like Finite Element Modeling (FEM) have transformed our understanding of breast cancer risk and progression. Advanced computational approaches in breast cancer research are the focus, with an emphasis on FEM's role in simulating breast tissue mechanics and enhancing precision in therapies such as radiofrequency ablation (RFA). Machine learning (ML), particularly Convolutional Neural Networks (CNNs), has revolutionized imaging modalities like mammograms and MRIs, improving diagnostic accuracy and early detection. AI applications in analyzing histopathological images have advanced tumor classification and grading, offering consistency and reducing inter-observer variability. Explainability tools like Grad-CAM, SHAP, and LIME enhance the transparency of AI-driven models, facilitating their integration into clinical workflows. Integrating FEM and ML represents a paradigm shift in breast cancer management. FEM offers precise modeling of tissue mechanics, while ML excels in predictive analytics and image analysis. Despite challenges such as data variability and limited standardization, synergizing these approaches promises adaptive, personalized care. These computational methods have the potential to redefine diagnostics, optimize treatment, and improve patient outcomes.

Exploring interpretable echo analysis using self-supervised parcels.

Majchrowska S, Hildeman A, Mokhtari R, Diethe T, Teare P

pubmed logopapersMay 17 2025
The application of AI for predicting critical heart failure endpoints using echocardiography is a promising avenue to improve patient care and treatment planning. However, fully supervised training of deep learning models in medical imaging requires a substantial amount of labelled data, posing significant challenges due to the need for skilled medical professionals to annotate image sequences. Our study addresses this limitation by exploring the potential of self-supervised learning, emphasising interpretability, robustness, and safety as crucial factors in cardiac imaging analysis. We leverage self-supervised learning on a large unlabelled dataset, facilitating the discovery of features applicable to a various downstream tasks. The backbone model not only generates informative features for training smaller models using simple techniques but also produces features that are interpretable by humans. The study employs a modified Self-supervised Transformer with Energy-based Graph Optimisation (STEGO) network on top of self-DIstillation with NO labels (DINO) as a backbone model, pre-trained on diverse medical and non-medical data. This approach facilitates the generation of self-segmented outputs, termed "parcels", which identify distinct anatomical sub-regions of the heart. Our findings highlight the robustness of these self-learned parcels across diverse patient profiles and phases of the cardiac cycle phases. Moreover, these parcels offer high interpretability and effectively encapsulate clinically relevant cardiac substructures. We conduct a comprehensive evaluation of the proposed self-supervised approach on publicly available datasets, demonstrating its adaptability to a wide range of requirements. Our results underscore the potential of self-supervised learning to address labelled data scarcity in medical imaging, offering a path to improve cardiac imaging analysis and enhance the efficiency and interpretability of diagnostic procedures, thus positively impacting patient care and clinical decision-making.

Fair ultrasound diagnosis via adversarial protected attribute aware perturbations on latent embeddings.

Xu Z, Tang F, Quan Q, Yao Q, Kong Q, Ding J, Ning C, Zhou SK

pubmed logopapersMay 17 2025
Deep learning techniques have significantly enhanced the convenience and precision of ultrasound image diagnosis, particularly in the crucial step of lesion segmentation. However, recent studies reveal that both train-from-scratch models and pre-trained models often exhibit performance disparities across sex and age attributes, leading to biased diagnoses for different subgroups. In this paper, we propose APPLE, a novel approach designed to mitigate unfairness without altering the parameters of the base model. APPLE achieves this by learning fair perturbations in the latent space through a generative adversarial network. Extensive experiments on both a publicly available dataset and an in-house ultrasound image dataset demonstrate that our method improves segmentation and diagnostic fairness across all sensitive attributes and various backbone architectures compared to the base models. Through this study, we aim to highlight the critical importance of fairness in medical segmentation and contribute to the development of a more equitable healthcare system.

On the Interplay of Human-AI Alignment,Fairness, and Performance Trade-offs in Medical Imaging

Haozhe Luo, Ziyu Zhou, Zixin Shu, Aurélie Pahud de Mortanges, Robert Berke, Mauricio Reyes

arxiv logopreprintMay 15 2025
Deep neural networks excel in medical imaging but remain prone to biases, leading to fairness gaps across demographic groups. We provide the first systematic exploration of Human-AI alignment and fairness in this domain. Our results show that incorporating human insights consistently reduces fairness gaps and enhances out-of-domain generalization, though excessive alignment can introduce performance trade-offs, emphasizing the need for calibrated strategies. These findings highlight Human-AI alignment as a promising approach for developing fair, robust, and generalizable medical AI systems, striking a balance between expert guidance and automated efficiency. Our code is available at https://github.com/Roypic/Aligner.

Privacy-Protecting Image Classification Within the Web Browser Using Deep Learning Models from Zenodo.

Auer F, Mayer S, Kramer F

pubmed logopapersMay 15 2025
Integrating deep learning into clinical workflows for medical image analysis holds promise for improving diagnostic accuracy. However, strict data privacy regulations and the sensitivity of clinical IT infrastructure limit the deployment of cloud-based solutions. This paper introduces WebIPred, a web-based application that loads deep learning models directly within the client's web browser, protecting patient privacy while maintaining compatibility with clinical IT environments. WebIPred supports the application of pre-trained models published on Zenodo and other repositories, allowing clinicians to apply these models to real patient data without the need for extensive technical knowledge. This paper outlines WebIPred's model integration system, prediction workflow, and privacy features. Our results show that WebIPred offers a privacy-protecting and flexible application for image classification, only relying on client-side processing. WebIPred combines its strong commitment to data privacy and security with a user-friendly interface that makes it easy for clinicians to integrate AI into their workflows.

Participatory Co-Creation of an AI-Supported Patient Information System: A Multi-Method Qualitative Study.

Heizmann C, Gleim P, Kellmeyer P

pubmed logopapersMay 15 2025
In radiology and other medical fields, informed consent often rely on paper-based forms, which can overwhelm patients with complex terminology. These forms are also resource-intensive. The KIPA project addresses these challenges by developing an AI-assisted patient information system to streamline the consent process, improve patient understanding, and reduce healthcare workload. The KIPA system uses natural language processing (NLP) to provide real-time, accessible explanations, answer questions, and support informed consent. KIPA follows an 'ethics-by-design' approach, integrating user feedback to align with patient and clinician needs. Interviews and usability testing identified requirements, such as simplified language and support for varying digital literacy. The study presented here explores the participatory co-creation of the KIPA system, focusing on improving informed consent in radiology through a multi-method qualitative approach. Preliminary results suggest that KIPA improves patient engagement and reduces insecurities by providing proactive guidance and tailored information. Future work will extend testing to other stakeholders and assess the impact of the system on clinical workflow.

Energy-Efficient AI for Medical Diagnostics: Performance and Sustainability Analysis of ResNet and MobileNet.

Rehman ZU, Hassan U, Islam SU, Gallos P, Boudjadar J

pubmed logopapersMay 15 2025
Artificial intelligence (AI) has transformed medical diagnostics by enhancing the accuracy of disease detection, particularly through deep learning models to analyze medical imaging data. However, the energy demands of training these models, such as ResNet and MobileNet, are substantial and often overlooked; however, researchers mainly focus on improving model accuracy. This study compares the energy use of these two models for classifying thoracic diseases using the well-known CheXpert dataset. We calculate power and energy consumption during training using the EnergyEfficientAI library. Results demonstrate that MobileNet outperforms ResNet by consuming less power and completing training faster, resulting in lower overall energy costs. This study highlights the importance of prioritizing energy efficiency in AI model development, promoting sustainable, eco-friendly approaches to advance medical diagnosis.

Challenges in Implementing Artificial Intelligence in Breast Cancer Screening Programs: Systematic Review and Framework for Safe Adoption.

Goh S, Goh RSJ, Chong B, Ng QX, Koh GCH, Ngiam KY, Hartman M

pubmed logopapersMay 15 2025
Artificial intelligence (AI) studies show promise in enhancing accuracy and efficiency in mammographic screening programs worldwide. However, its integration into clinical workflows faces several challenges, including unintended errors, the need for professional training, and ethical concerns. Notably, specific frameworks for AI imaging in breast cancer screening are still lacking. This study aims to identify the challenges associated with implementing AI in breast screening programs and to apply the Consolidated Framework for Implementation Research (CFIR) to discuss a practical governance framework for AI in this context. Three electronic databases (PubMed, Embase, and MEDLINE) were searched using combinations of the keywords "artificial intelligence," "regulation," "governance," "breast cancer," and "screening." Original studies evaluating AI in breast cancer detection or discussing challenges related to AI implementation in this setting were eligible for review. Findings were narratively synthesized and subsequently mapped directly onto the constructs within the CFIR. A total of 1240 results were retrieved, with 20 original studies ultimately included in this systematic review. The majority (n=19) focused on AI-enhanced mammography, while 1 addressed AI-enhanced ultrasound for women with dense breasts. Most studies originated from the United States (n=5) and the United Kingdom (n=4), with publication years ranging from 2019 to 2023. The quality of papers was rated as moderate to high. The key challenges identified were reproducibility, evidentiary standards, technological concerns, trust issues, as well as ethical, legal, societal concerns, and postadoption uncertainty. By aligning these findings with the CFIR constructs, action plans targeting the main challenges were incorporated into the framework, facilitating a structured approach to addressing these issues. This systematic review identifies key challenges in implementing AI in breast cancer screening, emphasizing the need for consistency, robust evidentiary standards, technological advancements, user trust, ethical frameworks, legal safeguards, and societal benefits. These findings can serve as a blueprint for policy makers, clinicians, and AI developers to collaboratively advance AI adoption in breast cancer screening. PROSPERO CRD42024553889; https://tinyurl.com/mu4nwcxt.
Page 7 of 982 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.