Sort by:
Page 7 of 53522 results

Deep Learning MRI Models for the Differential Diagnosis of Tumefactive Demyelination versus <i>IDH</i> Wild-Type Glioblastoma.

Conte GM, Moassefi M, Decker PA, Kosel ML, McCarthy CB, Sagen JA, Nikanpour Y, Fereidan-Esfahani M, Ruff MW, Guido FS, Pump HK, Burns TC, Jenkins RB, Erickson BJ, Lachance DH, Tobin WO, Eckel-Passow JE

pubmed logopapersJun 26 2025
Diagnosis of tumefactive demyelination can be challenging. The diagnosis of indeterminate brain lesions on MRI often requires tissue confirmation via brain biopsy. Noninvasive methods for accurate diagnosis of tumor and nontumor etiologies allows for tailored therapy, optimal tumor control, and a reduced risk of iatrogenic morbidity and mortality. Tumefactive demyelination has imaging features that mimic <i>isocitrate dehydrogenase</i> wild-type glioblastoma (<i>IDH</i>wt GBM). We hypothesized that deep learning applied to postcontrast T1-weighted (T1C) and T2-weighted (T2) MRI can discriminate tumefactive demyelination from <i>IDH</i>wt GBM. Patients with tumefactive demyelination (<i>n</i> = 144) and <i>IDH</i>wt GBM (<i>n</i> = 455) were identified by clinical registries. A 3D DenseNet121 architecture was used to develop models to differentiate tumefactive demyelination and <i>IDH</i>wt GBM by using both T1C and T2 MRI, as well as only T1C and only T2 images. A 3-stage design was used: 1) model development and internal validation via 5-fold cross validation by using a sex-, age-, and MRI technology-matched set of tumefactive demyelination and <i>IDH</i>wt GBM, 2) validation of model specificity on independent <i>IDH</i>wt GBM, and 3) prospective validation on tumefactive demyelination and <i>IDH</i>wt GBM. Stratified area under the receiver operating curves (AUROCs) were used to evaluate model performance stratified by sex, age at diagnosis, MRI scanner strength, and MRI acquisition. The deep learning model developed by using both T1C and T2 images had a prospective validation AUROC of 88% (95% CI: 0.82-0.95). In the prospective validation stage, a model score threshold of 0.28 resulted in 91% sensitivity of correctly classifying tumefactive demyelination and 80% specificity (correctly classifying <i>IDH</i>wt GBM). Stratified AUROCs demonstrated that model performance may be improved if thresholds were chosen stratified by age and MRI acquisition. MRI can provide the basis for applying deep learning models to aid in the differential diagnosis of brain lesions. Further validation is needed to evaluate how well the model generalizes across institutions, patient populations, and technology, and to evaluate optimal thresholds for classification. Next steps also should incorporate additional tumor etiologies such as CNS lymphoma and brain metastases.

Association of peripheral immune markers with brain age and dementia risk estimated using deep learning methods.

Huang X, Yuan S, Ling Y, Tan S, Bai Z, Xu Y, Shen S, Lyu J, Wang H

pubmed logopapersJun 25 2025
The peripheral immune system is essential for maintaining central nervous system homeostasis. This study investigates the effects of peripheral immune markers on accelerated brain aging and dementia using brain-predicted age difference based on neuroimaging. By leveraging data from the UK Biobank, Cox regression was used to explore the relationship between peripheral immune markers and dementia, and multivariate linear regression to assess associations between peripheral immune biomarkers and brain structure. Additionally, we established a brain age prediction model using Simple Fully Convolutional Network (SFCN) deep learning architecture. Analysis of the resulting brain-Predicted Age Difference (PAD) revealed relationships between accelerated brain aging, peripheral immune markers, and dementia. During the median follow-up period of 14.3 years, 4, 277 dementia cases were observed among 322, 761 participants. Both innate and adaptive immune markers correlated with dementia risk. NLR showed the strongest association with dementia risk (HR = 1.14; 95% CI: 1.11-1.18, P<0.001). Multivariate linear regression revealed significant associations between peripheral immune markers and brain regional structural indices. Utilizing the deep learning-based SFCN model, the estimated brain age of dementia subjects (MAE = 5.63, r2 = - 0.46, R = 0.22) was determined. PAD showed significant correlation with dementia risk and certain peripheral immune markers, particularly in individuals with positive brain age increment. This study employs brain age as a quantitative marker of accelerated brain aging to investigate its potential associations with peripheral immunity and dementia, highlighting the importance of early intervention targeting peripheral immune markers to delay brain aging and prevent dementia.

Regional free-water diffusion is more strongly related to neuroinflammation than neurodegeneration.

Sumra V, Hadian M, Dilliott AA, Farhan SMK, Frank AR, Lang AE, Roberts AC, Troyer A, Arnott SR, Marras C, Tang-Wai DF, Finger E, Rogaeva E, Orange JB, Ramirez J, Zinman L, Binns M, Borrie M, Freedman M, Ozzoude M, Bartha R, Swartz RH, Munoz D, Masellis M, Black SE, Dixon RA, Dowlatshahi D, Grimes D, Hassan A, Hegele RA, Kumar S, Pasternak S, Pollock B, Rajji T, Sahlas D, Saposnik G, Tartaglia MC

pubmed logopapersJun 25 2025
Recent research has suggested that neuroinflammation may be important in the pathogenesis of neurodegenerative diseases. Free-water diffusion (FWD) has been proposed as a non-invasive neuroimaging-based biomarker for neuroinflammation. Free-water maps were generated using diffusion MRI data in 367 patients from the Ontario Neurodegenerative Disease Research Initiative (108 Alzheimer's Disease/Mild Cognitive Impairment, 42 Frontotemporal Dementia, 37 Amyotrophic Lateral Sclerosis, 123 Parkinson's Disease, and 58 vascular disease-related Cognitive Impairment). The ability of FWD to predict neuroinflammation and neurodegeneration from biofluids was estimated using plasma glial fibrillary-associated protein (GFAP) and neurofilament light chain (NfL), respectively. Recursive Feature Elimination (RFE) performed the strongest out of all feature selection algorithms used and revealed regional specificity for areas that are the most important features for predicting GFAP over NfL concentration. Deep learning models using selected features and demographic information revealed better prediction of GFAP over NfL. Based on feature selection and deep learning methods, FWD was found to be more strongly related to GFAP concentration (measure of astrogliosis) over NfL (measure of neuro-axonal damage), across neurodegenerative disease groups, in terms of predictive performance. Non-invasive markers of neurodegeneration such as MRI structural imaging that can reveal neurodegeneration already exist, while non-invasive markers of neuroinflammation are not available. Our results support the use of FWD as a non-invasive neuroimaging-based biomarker for neuroinflammation.

Fusing Radiomic Features with Deep Representations for Gestational Age Estimation in Fetal Ultrasound Images

Fangyijie Wang, Yuan Liang, Sourav Bhattacharjee, Abey Campbell, Kathleen M. Curran, Guénolé Silvestre

arxiv logopreprintJun 25 2025
Accurate gestational age (GA) estimation, ideally through fetal ultrasound measurement, is a crucial aspect of providing excellent antenatal care. However, deriving GA from manual fetal biometric measurements depends on the operator and is time-consuming. Hence, automatic computer-assisted methods are demanded in clinical practice. In this paper, we present a novel feature fusion framework to estimate GA using fetal ultrasound images without any measurement information. We adopt a deep learning model to extract deep representations from ultrasound images. We extract radiomic features to reveal patterns and characteristics of fetal brain growth. To harness the interpretability of radiomics in medical imaging analysis, we estimate GA by fusing radiomic features and deep representations. Our framework estimates GA with a mean absolute error of 8.0 days across three trimesters, outperforming current machine learning-based methods at these gestational ages. Experimental results demonstrate the robustness of our framework across different populations in diverse geographical regions. Our code is publicly available on \href{https://github.com/13204942/RadiomicsImageFusion_FetalUS}{GitHub}.

Alterations in the functional MRI-based temporal brain organisation in individuals with obesity.

Lee S, Namgung JY, Han JH, Park BY

pubmed logopapersJun 25 2025
Obesity is associated with functional alterations in the brain. Although spatial organisation changes in the brains of individuals with obesity have been widely studied, the temporal dynamics in their brains remain poorly understood. Therefore, in this study, we investigated variations in the intrinsic neural timescale (INT) across different degrees of obesity using resting-state functional and diffusion magnetic resonance imaging data from the enhanced Nathan Kline Institute Rockland Sample database. We examined the relationship between the INT and obesity phenotypes using supervised machine learning, controlling for age and sex. To further explore the structure-function characteristics of these regions, we assessed the modular network properties by analysing the participation coefficients and within-module degree derived from the structure-function coupling matrices. Finally, the INT values of the identified regions were used to predict eating behaviour traits. A significant negative correlation was observed, particularly in the default mode, limbic and reward networks. We found a negative association with the participation coefficients, suggesting that shorter INT values in higher-order association areas are related to reduced network integration. Moreover, the INT values of these identified regions moderately predicted eating behaviours, underscoring the potential of the INT as a candidate marker for obesity and eating behaviours. These findings provide insight into the temporal organisation of neural activity in obesity, highlighting the role of specific brain networks in shaping behavioural outcomes.

Contrast-enhanced image synthesis using latent diffusion model for precise online tumor delineation in MRI-guided adaptive radiotherapy for brain metastases.

Ma X, Ma Y, Wang Y, Li C, Liu Y, Chen X, Dai J, Bi N, Men K

pubmed logopapersJun 25 2025
&#xD;Magnetic resonance imaging-guided adaptive radiotherapy (MRIgART) is a promising technique for long-course RT of large-volume brain metastasis (BM), due to the capacity to track tumor changes throughout treatment course. Contrast-enhanced T1-weighted (T1CE) MRI is essential for BM delineation, yet is often unavailable during online treatment concerning the requirement of contrast agent injection. This study aims to develop a synthetic T1CE (sT1CE) generation method to facilitate accurate online adaptive BM delineation.&#xD;Approach:&#xD;We developed a novel ControlNet-coupled latent diffusion model (CTN-LDM) combined with a personalized transfer learning strategy and a denoising diffusion implicit model (DDIM) inversion method to generate high quality sT1CE images from online T2-weighted (T2) or fluid attenuated inversion recovery (FLAIR) images. Visual quality of sT1CE images generated by the CTN-LDM was compared with classical deep learning models. BM delineation results using the combination of our sT1CE images and online T2/FLAIR images were compared with the results solely using online T2/FLAIR images, which is the current clinical method.&#xD;Main results:&#xD;Visual quality of sT1CE images from our CTN-LDM was superior to classical models both quantitatively and qualitatively. Leveraging sT1CE images, radiation oncologists achieved significant higher precision of adaptive BM delineation, with average Dice similarity coefficient of 0.93 ± 0.02 vs. 0.86 ± 0.04 (p < 0.01), compared with only using online T2/FLAIR images. &#xD;Significance:&#xD;The proposed method could generate high quality sT1CE images and significantly improve accuracy of online adaptive tumor delineation for long-course MRIgART of large-volume BM, potentially enhancing treatment outcomes and minimizing toxicity.

Novel Application of Connectomics to the Surgical Management of Pediatric Arteriovenous Malformations.

Syed SA, Al-Mufti F, Hanft SJ, Gandhi CD, Pisapia JM

pubmed logopapersJun 25 2025
Introduction The emergence of connectomics in neurosurgery has allowed for construction of detailed maps of white matter connections, incorporating both structural and functional connectivity patterns. The advantage of mapping cerebral vascular lesions to guide surgical approach shows great potential. We aim to identify the clinical utility of connectomics for the surgical treatment of pediatric arteriovenous malformations (AVM). Case Presentation We present two illustrative cases of the application of connectomics to the management of cerebral AVM in a 9-year-old and 8-year-old female. Using magnetic resonance anatomic and diffusion tensor imaging, a machine learning algorithm generated patient-specific representations of the corticospinal tract for the first patient, and the optic radiations for the second patient. The default mode network and language network were also examined for each patient. The imaging output served as an adjunct to guide operative decision making. It assisted with selection of the superior parietal lobule as the operative corridor for the first case. Furthermore, it alerted the surgeon to white matter tracts in close proximity to the AVM nidus during resection. Finally, it aided in risk versus benefit analysis regarding treatment approach, such as craniotomy for resection for the first patient versus radiosurgery for the second patient. Both patients had favorable neurologic outcomes at the available follow-up period. Conclusion Use of the software integrated well with clinical workflow. The output was used for planning and overlaid on the intraoperative neuro-navigation system. It improved visualization of eloquent regions, especially those networks not visible on standard anatomic imaging. Future studies will focus on expanding the cohort, conducting in pre- and post-operative connectomic analysis with correlation to clinical outcome measures, and incorporating functional magnetic resonance imaging.

Development and in silico imaging trial evaluation of a deep-learning-based transmission-less attenuation compensation method for DaT SPECT

Zitong Yu, Md Ashequr Rahman, Zekun Li, Chunwei Ying, Hongyu An, Tammie L. S. Benzinger, Richard Laforest, Jingqin Luo, Scott A. Norris, Abhinav K. Jha

arxiv logopreprintJun 25 2025
Quantitative measures of dopamine transporter (DaT) uptake in caudate, putamen, and globus pallidus derived from DaT-single-photon emission computed tomography (SPECT) images are being investigated as biomarkers to diagnose, assess disease status, and track the progression of Parkinsonism. Reliable quantification from DaT-SPECT images requires performing attenuation compensation (AC), typically with a separate X-ray CT scan. Such CT-based AC (CTAC) has multiple challenges, a key one being the non-availability of X-ray CT component on many clinical SPECT systems. Even when a CT is available, the additional CT scan leads to increased radiation dose, costs, and complexity, potential quantification errors due to SPECT-CT misalignment, and higher training and regulatory requirements. To overcome the challenges with the requirement of a CT scan for AC in DaT SPECT, we propose a deep learning (DL)-based transmission-less AC method for DaT-SPECT (DaT-CTLESS). An in silico imaging trial, titled ISIT-DaT, was designed to evaluate the performance of DaT-CTLESS on the regional uptake quantification task. We observed that DaT-CTLESS yielded a significantly higher correlation with CTAC than that between UAC and CTAC on the regional DaT uptake quantification task. Further, DaT-CLTESS had an excellent agreement with CTAC on this task, significantly outperformed UAC in distinguishing patients with normal versus reduced putamen SBR, yielded good generalizability across two scanners, was generally insensitive to intra-regional uptake heterogeneity, demonstrated good repeatability, exhibited robust performance even as the size of the training data was reduced, and generally outperformed the other considered DL methods on the task of quantifying regional uptake across different training dataset sizes. These results provide a strong motivation for further clinical evaluation of DaT-CTLESS.

Deep learning-based diffusion MRI tractography: Integrating spatial and anatomical information.

Yang Y, Yuan Y, Ren B, Wu Y, Feng Y, Zhang X

pubmed logopapersJun 25 2025
Diffusion MRI tractography technique enables non-invasive visualization of the white matter pathways in the brain. It plays a crucial role in neuroscience and clinical fields by facilitating the study of brain connectivity and neurological disorders. However, the accuracy of reconstructed tractograms has been a longstanding challenge. Recently, deep learning methods have been applied to improve tractograms for better white matter coverage, but often comes at the expense of generating excessive false-positive connections. This is largely due to their reliance on local information to predict long-range streamlines. To improve the accuracy of streamline propagation predictions, we introduce a novel deep learning framework that integrates image-domain spatial information and anatomical information along tracts, with the former extracted through convolutional layers and the latter modeled via a Transformer-decoder. Additionally, we employ a weighted loss function to address fiber class imbalance encountered during training. We evaluate the proposed method on the simulated ISMRM 2015 Tractography Challenge dataset, achieving a valid streamline rate of 66.2 %, white matter coverage of 63.8 %, and successfully reconstructing 24 out of 25 bundles. Furthermore, on the multi-site Tractoinferno dataset, the proposed method demonstrates its ability to handle various diffusion MRI acquisition schemes, achieving a 5.7 % increase in white matter coverage and a 4.1 % decrease in overreach compared to RNN-based methods.

Fusing Radiomic Features with Deep Representations for Gestational Age Estimation in Fetal Ultrasound Images

Fangyijie Wang, Yuan Liang, Sourav Bhattacharjee, Abey Campbell, Kathleen M. Curran, Guénolé Silvestre

arxiv logopreprintJun 25 2025
Accurate gestational age (GA) estimation, ideally through fetal ultrasound measurement, is a crucial aspect of providing excellent antenatal care. However, deriving GA from manual fetal biometric measurements depends on the operator and is time-consuming. Hence, automatic computer-assisted methods are demanded in clinical practice. In this paper, we present a novel feature fusion framework to estimate GA using fetal ultrasound images without any measurement information. We adopt a deep learning model to extract deep representations from ultrasound images. We extract radiomic features to reveal patterns and characteristics of fetal brain growth. To harness the interpretability of radiomics in medical imaging analysis, we estimate GA by fusing radiomic features and deep representations. Our framework estimates GA with a mean absolute error of 8.0 days across three trimesters, outperforming current machine learning-based methods at these gestational ages. Experimental results demonstrate the robustness of our framework across different populations in diverse geographical regions. Our code is publicly available on \href{https://github.com/13204942/RadiomicsImageFusion_FetalUS}.
Page 7 of 53522 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.