Sort by:
Page 64 of 3533530 results

FOCUS-DWI improves prostate cancer detection through deep learning reconstruction with IQMR technology.

Zhao Y, Xie XL, Zhu X, Huang WN, Zhou CW, Ren KX, Zhai RY, Wang W, Wang JW

pubmed logopapersAug 1 2025
This study explored the effects of using Intelligent Quick Magnetic Resonance (IQMR) image post-processing on image quality in Field of View Optimized and Constrained Single-Shot Diffusion-Weighted Imaging (FOCUS-DWI) sequences for prostate cancer detection, and assessed its efficacy in distinguishing malignant from benign lesions. The clinical data and MRI images from 62 patients with prostate masses (31 benign and 31 malignant) were retrospectively analyzed. Axial T2-weighted imaging with fat saturation (T2WI-FS) and FOCUS-DWI sequences were acquired, and the FOCUS-DWI images were processed using the IQMR post-processing system to generate IQMR-FOCUS-DWI images. Two independent radiologists undertook subjective scoring, grading using the Prostate Imaging Reporting and Data System (PI-RADS), diagnosis of benign and malignant lesions, and diagnostic confidence scoring for images from the FOCUS-DWI and IQMR-FOCUS-DWI sequences. Additionally, quantitative analyses, specifically, the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM), were conducted using T2WI-FS as the reference standard. The apparent diffusion coefficients (ADCs) of malignant and benign lesions were compared between the two imaging sequences. Spearman correlation coefficients were calculated to evaluate the associations between diagnostic confidence scores and diagnostic accuracy rates of the two sequence groups, as well as between the ADC values of malignant lesions and Gleason grading in the two sequence groups. Receiver operating characteristic (ROC) curves were utilized to assess the efficacy of ADC in distinguishing lesions. The qualitative analysis revealed that IQMR-FOCUS-DWI images showed significantly better noise suppression, reduced geometric distortion, and enhanced overall quality relative to the FOCUS-DWI images (P < 0.001). There was no significant difference in the PI-RADS scores between IQMR-FOCUS-DWI and FOCUS-DWI images (P = 0.0875), while the diagnostic confidence scores of IQMR-FOCUS-DWI sequences were markedly higher than those of FOCUS-DWI sequences (P = 0.0002). The diagnostic results of the FOCUS-DWI sequences for benign and malignant prostate lesions were consistent with those of the pathological results (P < 0.05), as were those of the IQMR-FOCUS-DWI sequences (P < 0.05). The quantitative analysis indicated that the PSNR, SSIM, and ADC values were markedly greater in IQMR-FOCUS-DWI images relative to FOCUS-DWI images (P < 0.01). In both imaging sequences, benign lesions exhibited ADC values markedly greater than those of malignant lesions (P < 0.001). The diagnostic confidence scores of both groups of sequences were significantly positively correlated with the diagnostic accuracy rate. In malignant lesions, the ADC values of the FOCUS-DWI sequences showed moderate negative correlations with the Gleason grading, while the ADC values of the IQMR-FOCUS-DWI sequences were strongly negatively associated with the Gleason grading. ROC curves indicated the superior diagnostic performance of IQMR-FOCUS-DWI (AUC = 0.941) compared to FOCUS-DWI (AUC = 0.832) for differentiating prostate lesions (P = 0.0487). IQMR-FOCUS-DWI significantly enhances image quality and improves diagnostic accuracy for benign and malignant prostate lesions compared to conventional FOCUS-DWI.

Enhanced Detection of Age-Related and Cognitive Declines Using Automated Hippocampal-To-Ventricle Ratio in Alzheimer's Patients.

Fernandez-Lozano S, Fonov V, Schoemaker D, Pruessner J, Potvin O, Duchesne S, Collins DL

pubmed logopapersAug 1 2025
The hippocampal-to-ventricle ratio (HVR) is a biomarker of medial temporal atrophy, particularly useful in the assessment of neurodegeneration in diseases such as Alzheimer's disease (AD). To minimize subjectivity and inter-rater variability, an automated, accurate, precise, and reliable segmentation technique for the hippocampus (HC) and surrounding cerebro-spinal fluid (CSF) filled spaces-such as the temporal horns of the lateral ventricles-is essential. We trained and evaluated three automated methods for the segmentation of both HC and CSF (Multi-Atlas Label Fusion (MALF), Nonlinear Patch-Based Segmentation (NLPB), and a Convolutional Neural Network (CNN)). We then evaluated these methods, including the widely used FreeSurfer technique, using baseline T1w MRIs of 1641 participants from the AD Neuroimaging Initiative study with various degree of atrophy associated with their cognitive status on the spectrum from cognitively healthy to clinically probable AD. Our gold standard consisted in manual segmentation of HC and CSF from 80 cognitively healthy individuals. We calculated HC volumes and HVR and compared all methods in terms of segmentation reliability, similarity across methods, sensitivity in detecting between-group differences and associations with age, scores of the learning subtest of the Rey Auditory Verbal Learning Test (RAVLT) and the Alzheimer's Disease Assessment Scale 13 (ADAS13) scores. Cross validation demonstrated that the CNN method yielded more accurate HC and CSF segmentations when compared to MALF and NLPB, demonstrating higher volumetric overlap (Dice Kappa = 0.94) and correlation (rho = 0.99) with the manual labels. It was also the most reliable method in clinical data application, showing minimal failures. Our comparisons yielded high correlations between FreeSurfer, CNN and NLPB volumetric values. HVR yielded higher control:AD effect sizes than HC volumes among all segmentation methods, reinforcing the significance of HVR in clinical distinction. The positive association with age was significantly stronger for HVR compared to HC volumes on all methods except FreeSurfer. Memory associations with HC volumes or HVR were only significant for individuals with mild cognitive impairment. Finally, the HC volumes and HVR showed comparable negative associations with ADAS13, particularly in the mild cognitive impairment cohort. This study provides an evaluation of automated segmentation methods centered to estimate HVR, emphasizing the superior performance of a CNN-based algorithm. The findings underscore the pivotal role of accurate segmentation in HVR calculations for precise clinical applications, contributing valuable insights into medial temporal lobe atrophy in neurodegenerative disorders, especially AD.

Reference charts for first-trimester placental volume derived using OxNNet.

Mathewlynn S, Starck LN, Yin Y, Soltaninejad M, Swinburne M, Nicolaides KH, Syngelaki A, Contreras AG, Bigiotti S, Woess EM, Gerry S, Collins S

pubmed logopapersAug 1 2025
To establish a comprehensive reference range for OxNNet-derived first-trimester placental volume (FTPV), based on values observed in healthy pregnancies. Data were obtained from the First Trimester Placental Ultrasound Study, an observational cohort study in which three-dimensional placental ultrasound imaging was performed between 11 + 2 and 14 + 1 weeks' gestation, alongside otherwise routine care. A subgroup of singleton pregnancies resulting in term live birth, without neonatal unit admission or major chromosomal or structural abnormality, were included. Exclusion criteria were fetal growth restriction, maternal diabetes mellitus, hypertensive disorders of pregnancy or other maternal medical conditions (e.g. chronic hypertension, antiphospholipid syndrome, systemic lupus erythematosus). Placental images were processed using the OxNNet toolkit, a software solution based on a fully convolutional neural network, for automated placental segmentation and volume calculation. Quantile regression and the lambda-mu-sigma (LMS) method were applied to model the distribution of FTPV, using both crown-rump length (CRL) and gestational age as predictors. Model fit was assessed using the Akaike information criterion (AIC), and centile curves were constructed for visual inspection. The cohort comprised 2547 cases. The distribution of FTPV across gestational ages was positively skewed, with variation in the distribution at different gestational timepoints. In model comparisons, the LMS method yielded lower AIC values compared with quantile regression models. For predicting FTPV from CRL, the LMS model with the Sinh-Arcsinh distribution achieved the best performance, with the lowest AIC value. For gestational-age-based prediction, the LMS model with the Box-Cox Cole and Green original distribution achieved the lowest AIC value. The LMS models were selected to construct centile charts for FTPV based on both CRL and gestational age. Evaluation of the centile charts revealed strong agreement between predicted and observed centiles, with minimal deviations. Both models demonstrated excellent calibration, and the Z-scores derived using each of the models confirmed normal distribution. This study established reference ranges for FTPV based on both CRL and gestational age in healthy pregnancies. The LMS method provided the best model fit, demonstrating excellent calibration and minimal deviations between predicted and observed centiles. These findings should facilitate the exploration of FTPV as a potential biomarker for adverse pregnancy outcome and provide a foundation for future research into its clinical applications. © 2025 The Author(s). Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.

Lumbar and pelvic CT image segmentation based on cross-scale feature fusion and linear self-attention mechanism.

Li C, Chen L, Liu Q, Teng J

pubmed logopapersAug 1 2025
The lumbar spine and pelvis are critical stress-bearing structures of the human body, and their rapid and accurate segmentation plays a vital role in clinical diagnosis and intervention. However, conventional CT imaging poses significant challenges due to the low contrast of sacral and bilateral hip tissues and the complex and highly similar intervertebral space structures within the lumbar spine. To address these challenges, we propose a general-purpose segmentation network that integrates a cross-scale feature fusion strategy with a linear self-attention mechanism. The proposed network effectively extracts multi-scale features and fuses them along the channel dimension, enabling both structural and boundary information of lumbar and pelvic regions to be captured within the encoder-decoder architecture.Furthermore, we introduce a linear mapping strategy to approximate the traditional attention matrix with a low-rank representation, allowing the linear attention mechanism to significantly reduce computational complexity while maintaining segmentation accuracy for vertebrae and pelvic bones. Comparative and ablation experiments conducted on the CTSpine1K and CTPelvic1K datasets demonstrate that our method achieves improvements of 1.5% in Dice Similarity Coefficient (DSC) and 2.6% in Hausdorff Distance (HD) over state-of-the-art models, validating the effectiveness of our approach in enhancing boundary segmentation quality and segmentation accuracy in homogeneous anatomical regions.

Utility of an artificial intelligence-based lung CT airway model in the quantitative evaluation of large and small airway lesions in patients with chronic obstructive pulmonary disease.

Liu Z, Li J, Li B, Yi G, Pang S, Zhang R, Li P, Yin Z, Zhang J, Lv B, Yan J, Ma J

pubmed logopapersAug 1 2025
Accurate quantification of the extent of bronchial damage across various airway levels in chronic obstructive pulmonary disease (COPD) remains a challenge. In this study, artificial intelligence (AI) was employed to develop an airway segmentation model to investigate the morphological changes of the central and peripheral airways in COPD patients and the effects of these airway changes on pulmonary function classification and acute COPD exacerbations. Clinical data from a total of 340 patients with COPD and 73 healthy volunteers were collected and compiled. An AI-driven airway segmentation model was constructed using Convolutional Neural Regressor (CNR) and Airway Transfer Network (ATN) algorithms. The efficacy of the model was evaluated through support vector machine (SVM) and random forest regression approaches. The area under the receiver operating characteristic (ROC) curve (AUC) of the SVM in evaluating the COPD airway segmentation model was 0.96, with a sensitivity of 97% and a specificity of 92%, however, the AUC value of the SVM was 0.81 when it was replaced the healthy group by non-COPD outpatients. Compared with the healthy group, the grade and the total number of airway segmentation were decreased and the diameters of the right main bronchus and bilateral lobar bronchi of patients with COPD were smaller and the airway walls were thinner (all P < 0.01). However, the diameters of the subsegmental and small airway bronchi were increased, and airway walls were thickened, and the arc lengths were shorter ( all P < 0.01), especially in patients with severe COPD (all P < 0.05). Correlation and regression analysis showed that FEV1%pre was positively correlated with the diameters and airway wall thickness of the main and lobar airway, and the arc lengths of small airway bronchi (all P < 0.05). Airway wall thickness of the subsegment and small airway were found to have the greatest impact on the frequency of COPD exacerbations. Artificial intelligence lung CT airway segmentation model is a non-invasive quantitative tool for measuring chronic obstructive pulmonary disease. The main changes in COPD patients are that the central airway diameter becomes narrower and the thickness becomes thinner. The arc length of the peripheral airway becomes shorter, and the diameter and airway wall thickness become larger, which is more obvious in severe patients. Pulmonary function classification and small and medium airway dysfunction are also affected by the diameter, thickness and arc length of large and small airways. Small airway remodeling is more significant in acute exacerbations of COPD.

Coronary CT angiography evaluation with artificial intelligence for individualized medical treatment of atherosclerosis: a Consensus Statement from the QCI Study Group.

Schulze K, Stantien AM, Williams MC, Vassiliou VS, Giannopoulos AA, Nieman K, Maurovich-Horvat P, Tarkin JM, Vliegenthart R, Weir-McCall J, Mohamed M, Föllmer B, Biavati F, Stahl AC, Knape J, Balogh H, Galea N, Išgum I, Arbab-Zadeh A, Alkadhi H, Manka R, Wood DA, Nicol ED, Nurmohamed NS, Martens FMAC, Dey D, Newby DE, Dewey M

pubmed logopapersAug 1 2025
Coronary CT angiography is widely implemented, with an estimated 2.2 million procedures in patients with stable chest pain every year in Europe alone. In parallel, artificial intelligence and machine learning are poised to transform coronary atherosclerotic plaque evaluation by improving reliability and speed. However, little is known about how to use coronary atherosclerosis imaging biomarkers to individualize recommendations for medical treatment. This Consensus Statement from the Quantitative Cardiovascular Imaging (QCI) Study Group outlines key recommendations derived from a three-step Delphi process that took place after the third international QCI Study Group meeting in September 2024. Experts from various fields of cardiovascular imaging agreed on the use of age-adjusted and gender-adjusted percentile curves, based on coronary plaque data from the DISCHARGE and SCOT-HEART trials. Two key issues were addressed: the need to harness the reliability and precision of artificial intelligence and machine learning tools and to tailor treatment on the basis of individualized plaque analysis. The QCI Study Group recommends that the presence of any atherosclerotic plaque should lead to a recommendation of pharmacological treatment, whereas the 70th percentile of total plaque volume warrants high-intensity treatment. The aim of these recommendations is to lay the groundwork for future trials and to unlock the potential of coronary CT angiography to improve patient outcomes globally.

BEA-CACE: branch-endpoint-aware double-DQN for coronary artery centerline extraction in CT angiography images.

Zhang Y, Luo G, Wang W, Cao S, Dong S, Yu D, Wang X, Wang K

pubmed logopapersAug 1 2025
In order to automate the centerline extraction of the coronary tree, three challenges must be addressed: tracking branches automatically, passing through plaques successfully, and detecting endpoints accurately. This study aims to develop a method to solve the three challenges. We propose a branch-endpoint-aware coronary centerline extraction framework. The framework consists of a deep reinforcement learning-based tracker and a 3D dilated CNN-based detector. The tracker is designed to predict the actions of an agent with the objective of tracking the centerline. The detector identifies bifurcation points and endpoints, assisting the tracker in tracking branches and terminating the tracking process automatically. The detector can also estimate the radius values of the coronary artery. The method achieves the state-of-the-art performance in both the centerline extraction and radius estimate. Furthermore, the method necessitates minimal user interaction to extract a coronary tree, a feature that surpasses other interactive methods. The method can track branches automatically, pass through plaques successfully and detect endpoints accurately. Compared with other interactive methods that require multiple seeds, our method only needs one seed to extract the entire coronary tree.

Acute lymphoblastic leukemia diagnosis using machine learning techniques based on selected features.

El Houby EMF

pubmed logopapersAug 1 2025
Cancer is considered one of the deadliest diseases worldwide. Early detection of cancer can significantly improve patient survival rates. In recent years, computer-aided diagnosis (CAD) systems have been increasingly employed in cancer diagnosis through various medical image modalities. These systems play a critical role in enhancing diagnostic accuracy, reducing physician workload, providing consistent second opinions, and contributing to the efficiency of the medical industry. Acute lymphoblastic leukemia (ALL) is a fast-progressing blood cancer that primarily affects children but can also occur in adults. Early and accurate diagnosis of ALL is crucial for effective treatment and improved outcomes, making it a vital area for CAD system development. In this research, a CAD system for ALL diagnosis has been developed. It contains four phases which are preprocessing, segmentation, feature extraction and selection phase, and classification of suspicious regions as normal or abnormal. The proposed system was applied to microscopic blood images to classify each case as ALL or normal. Three classifiers which are Naïve Bayes (NB), Support Vector Machine (SVM) and K-nearest Neighbor (K-NN) were utilized to classify the images based on selected features. Ant Colony Optimization (ACO) was combined with the classifiers as a feature selection method to identify the optimal subset of features among the extracted features from segmented cell parts that yield the highest classification accuracy. The NB classifier achieved the best performance, with accuracy, sensitivity, and specificity of 96.15%, 97.56, and 94.59%, respectively.

Deep learning-based super-resolution US radiomics to differentiate testicular seminoma and non-seminoma: an international multicenter study.

Zhang Y, Lu S, Peng C, Zhou S, Campo I, Bertolotto M, Li Q, Wang Z, Xu D, Wang Y, Xu J, Wu Q, Hu X, Zheng W, Zhou J

pubmed logopapersAug 1 2025
Subvariants of testicular germ cell tumor (TGCT) significantly affect therapeutic strategies and patient prognosis. However, preoperatively distinguishing seminoma (SE) from non-seminoma (n-SE) remains a challenge. This study aimed to evaluate the performance of a deep learning-based super-resolution (SR) US radiomics model for SE/n-SE differentiation. This international multicenter retrospective study recruited patients with confirmed TGCT between 2015 and 2023. A pre-trained SR reconstruction algorithm was applied to enhance native resolution (NR) images. NR and SR radiomics models were constructed, and the superior model was then integrated with clinical features to construct clinical-radiomics models. Diagnostic performance was evaluated by ROC analysis (AUC) and compared with radiologists' assessments using the DeLong test. A total of 486 male patients were enrolled for training (n = 338), domestic (n = 92), and international (n = 59) validation sets. The SR radiomics model achieved AUCs of 0.90, 0.82, and 0.91, respectively, in the training, domestic, and international validation sets, significantly surpassing the NR model (p < 0.001, p = 0.031, and p = 0.001, respectively). The clinical-radiomics model exhibited a significantly higher across both domestic and international validation sets compared to the SR radiomics model alone (0.95 vs 0.82, p = 0.004; 0.97 vs 0.91, p = 0.031). Moreover, the clinical-radiomics model surpassed the performance of experienced radiologists in both domestic (AUC, 0.95 vs 0.85, p = 0.012) and international (AUC, 0.97 vs 0.77, p < 0.001) validation cohorts. The SR-based clinical-radiomics model can effectively differentiate between SE and n-SE. This international multicenter study demonstrated that a radiomics model of deep learning-based SR reconstructed US images enabled effective differentiation between SE and n-SE. Clinical parameters and radiologists' assessments exhibit limited diagnostic accuracy for SE/n-SE differentiation in TGCT. Based on scrotal US images of TGCT, the SR radiomics models performed better than the NR radiomics models. The SR-based clinical-radiomics model outperforms both the radiomics model and radiologists' assessment, enabling accurate, non-invasive preoperative differentiation between SE and n-SE.

Explainable multimodal deep learning for predicting thyroid cancer lateral lymph node metastasis using ultrasound imaging.

Shen P, Yang Z, Sun J, Wang Y, Qiu C, Wang Y, Ren Y, Liu S, Cai W, Lu H, Yao S

pubmed logopapersAug 1 2025
Preoperative prediction of lateral lymph node metastasis is clinically crucial for guiding surgical strategy and prognosis assessment, yet precise prediction methods are lacking. We therefore develop Lateral Lymph Node Metastasis Network (LLNM-Net), a bidirectional-attention deep-learning model that fuses multimodal data (preoperative ultrasound images, radiology reports, pathological findings, and demographics) from 29,615 patients and 9836 surgical cases across seven centers. Integrating nodule morphology and position with clinical text, LLNM-Net achieves an Area Under the Curve (AUC) of 0.944 and 84.7% accuracy in multicenter testing, outperforming human experts (64.3% accuracy) and surpassing previous models by 7.4%. Here we show tumors within 0.25 cm of the thyroid capsule carry >72% metastasis risk, with middle and upper lobes as high-risk regions. Leveraging location, shape, echogenicity, margins, demographics, and clinician inputs, LLNM-Net further attains an AUC of 0.983 for identifying high-risk patients. The model is thus a promising for tool for preoperative screening and risk stratification.
Page 64 of 3533530 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.