Sort by:
Page 63 of 1341340 results

FairICP: identifying biases and increasing transparency at the point of care in post-implementation clinical decision support using inductive conformal prediction.

Sun X, Nakashima M, Nguyen C, Chen PH, Tang WHW, Kwon D, Chen D

pubmed logopapersJun 15 2025
Fairness concerns stemming from known and unknown biases in healthcare practices have raised questions about the trustworthiness of Artificial Intelligence (AI)-driven Clinical Decision Support Systems (CDSS). Studies have shown unforeseen performance disparities in subpopulations when applied to clinical settings different from training. Existing unfairness mitigation strategies often struggle with scalability and accessibility, while their pursuit of group-level prediction performance parity does not effectively translate into fairness at the point of care. This study introduces FairICP, a flexible and cost-effective post-implementation framework based on Inductive Conformal Prediction (ICP), to provide users with actionable knowledge of model uncertainty due to subpopulation level biases at the point of care. FairICP applies ICP to identify the model's scope of competence through group specific calibration, ensuring equitable prediction reliability by filtering predictions that fall within the trusted competence boundaries. We evaluated FairICP against four benchmarks on three medical imaging modalities: (1) Cardiac Magnetic Resonance Imaging (MRI), (2) Chest X-ray and (3) Dermatology Imaging, acquired from both private and large public datasets. Frameworks are assessed on prediction performance enhancement and unfairness mitigation capabilities. Compared to the baseline, FairICP improved prediction accuracy by 7.2% and reduced the accuracy gap between the privileged and unprivileged subpopulations by 2.2% on average across all three datasets. Our work provides a robust solution to promote trust and transparency in AI-CDSS, fostering equality and equity in healthcare for diverse patient populations. Such post-process methods are critical to enabling a robust framework for AI-CDSS implementation and monitoring for healthcare settings.

Hierarchical Deep Feature Fusion and Ensemble Learning for Enhanced Brain Tumor MRI Classification

Zahid Ullah, Jihie Kim

arxiv logopreprintJun 14 2025
Accurate brain tumor classification is crucial in medical imaging to ensure reliable diagnosis and effective treatment planning. This study introduces a novel double ensembling framework that synergistically combines pre-trained deep learning (DL) models for feature extraction with optimized machine learning (ML) classifiers for robust classification. The framework incorporates comprehensive preprocessing and data augmentation of brain magnetic resonance images (MRI), followed by deep feature extraction using transfer learning with pre-trained Vision Transformer (ViT) networks. The novelty lies in the dual-level ensembling strategy: feature-level ensembling, which integrates deep features from the top-performing ViT models, and classifier-level ensembling, which aggregates predictions from hyperparameter-optimized ML classifiers. Experiments on two public Kaggle MRI brain tumor datasets demonstrate that this approach significantly surpasses state-of-the-art methods, underscoring the importance of feature and classifier fusion. The proposed methodology also highlights the critical roles of hyperparameter optimization (HPO) and advanced preprocessing techniques in improving diagnostic accuracy and reliability, advancing the integration of DL and ML for clinically relevant medical image analysis.

Optimizing stroke detection with genetic algorithm-based feature selection in deep learning models.

Nayak GS, Mallick PK, Sahu DP, Kathi A, Reddy R, Viyyapu J, Pabbisetti N, Udayana SP, Sanapathi H

pubmed logopapersJun 14 2025
Brain stroke is a leading cause of disability and mortality worldwide, necessitating the development of accurate and efficient diagnostic models. In this study, we explore the integration of Genetic Algorithm (GA)-based feature selection with three state-of-the-art deep learning architectures InceptionV3, VGG19, and MobileNetV2 to enhance stroke detection from neuroimaging data. GA is employed to optimize feature selection, reducing redundancy and improving model performance. The selected features are subsequently fed into the respective deep-learning models for classification. The dataset used in this study comprises neuroimages categorized into "Normal" and "Stroke" classes. Experimental results demonstrate that incorporating GA improves classification accuracy while reducing computational complexity. A comparative analysis of the three architectures reveals their effectiveness in stroke detection, with MobileNetV2 achieving the highest accuracy of 97.21%. Notably, the integration of Genetic Algorithms with MobileNetV2 for feature selection represents a novel contribution, setting this study apart from prior approaches that rely solely on traditional CNN pipelines. Owing to its lightweight design and low computational demands, MobileNetV2 also offers significant advantages for real-time clinical deployment, making it highly applicable for use in emergency care settings where rapid diagnosis is critical. Additionally, performance metrics such as precision, recall, F1-score, and Receiver Operating Characteristic (ROC) curves are evaluated to provide comprehensive insights into model efficacy. This research underscores the potential of genetic algorithm-driven optimization in enhancing deep learning-based medical image classification, paving the way for more efficient and reliable stroke diagnosis.

Artificial intelligence for age-related macular degeneration diagnosis in Australia: A Novel Qualitative Interview Study.

Ly A, Herse S, Williams MA, Stapleton F

pubmed logopapersJun 14 2025
Artificial intelligence (AI) systems for age-related macular degeneration (AMD) diagnosis abound but are not yet widely implemented. AI implementation is complex, requiring the involvement of multiple, diverse stakeholders including technology developers, clinicians, patients, health networks, public hospitals, private providers and payers. There is a pressing need to investigate how AI might be adopted to improve patient outcomes. The purpose of this first study of its kind was to use the AI translation extended version of the non-adoption, abandonment, scale-up, spread and sustainability of healthcare technologies framework to explore stakeholder experiences, attitudes, enablers, barriers and possible futures of digital diagnosis using AI for AMD and eyecare in Australia. Semi-structured, online interviews were conducted with 37 stakeholders (12 clinicians, 10 healthcare leaders, 8 patients and 7 developers) from September 2022 to March 2023. The interviews were audio-recorded, transcribed and analysed using directed and summative content analysis. Technological features influencing implementation were most frequently discussed, followed by the context or wider system, value proposition, adopters, organisations, the condition and finally embedding the adaptation. Patients preferred to focus on the condition, while healthcare leaders elaborated on organisation factors. Overall, stakeholders supported a portable, device-independent clinical decision support tool that could be integrated with existing diagnostic equipment and patient management systems. Opportunities for AI to drive new models of healthcare, patient education and outreach, and the importance of maintaining equity across population groups were consistently emphasised. This is the first investigation to report numerous, interacting perspectives on the adoption of digital diagnosis for AMD in Australia, incorporating an intentionally diverse stakeholder group and the patient voice. It provides a series of practical considerations for the implementation of AI and digital diagnosis into existing care for people with AMD.

A review: Lightweight architecture model in deep learning approach for lung disease identification.

Maharani DA, Utaminingrum F, Husnina DNN, Sukmaningrum B, Rahmania FN, Handani F, Chasanah HN, Arrahman A, Febrianto F

pubmed logopapersJun 14 2025
As one of the leading causes of death worldwide, early detection of lung disease is a very important step to improve the effectiveness of treatment. By using medical image data, such as X-ray or CT-scan, classification of lung disease can be done. Deep learning methods have been widely used to recognize complex patterns in medical images, but this approach has the constraints of requiring large data variations and high computing resources. In overcoming these constraints, the lightweight architecture in deep learning can provide a more efficient solution based on the number of parameters and computing time. This method can be applied to devices with low processor specifications on portable devices such as mobile phones. This article presents a comprehensive review of 23 research studies published between 2020 and 2025, focusing on various lightweight architectures and optimization techniques aimed at improving the accuracy of lung disease detection. The results show that these models are able to significantly reduce parameter sizes, resulting in faster computation times while maintaining competitive accuracy compared to traditional deep learning architectures. From the research that has been done, it can be seen that SqueezeNet applied on public COVID-19 datasets is the best basic architecture with high accuracy, and the number of parameters is 570 thousand, which is very low. On the other hand, UNet requires 31.07 million parameters, and SegNet requires 29.45 million parameters trained on CT scan images from Italian Society of Medical and Interventional Radiology and Radiopedia, so it is less efficient. For the combination method, EfficientNetV2 and Extreme Learning Machine (ELM) are able to achieve the highest accuracy of 98.20 % and can significantly reduce parameters. The worst performance is shown by VGG and UNet with a decrease in accuracy from 91.05 % to 87 % and an increase in the number of parameters. It can be concluded that the lightweight architecture can be applied to medical image classification in the diagnosis of lung disease quickly and efficiently on devices with limited specifications.

A multimodal fusion system predicting survival benefits of immune checkpoint inhibitors in unresectable hepatocellular carcinoma.

Xu J, Wang T, Li J, Wang Y, Zhu Z, Fu X, Wang J, Zhang Z, Cai W, Song R, Hou C, Yang LZ, Wang H, Wong STC, Li H

pubmed logopapersJun 14 2025
Early identification of unresectable hepatocellular carcinoma (HCC) patients who may benefit from immune checkpoint inhibitors (ICIs) is crucial for optimizing outcomes. Here, we developed a multimodal fusion (MMF) system integrating CT-derived deep learning features and clinical data to predict overall survival (OS) and progression-free survival (PFS). Using retrospective multicenter data (n = 859), the MMF combining an ensemble deep learning (Ensemble-DL) model with clinical variables achieved strong external validation performance (C-index: OS = 0.74, PFS = 0.69), outperforming radiomics (29.8% OS improvement), mRECIST (27.6% OS improvement), clinical benchmarks (C-index: OS = 0.67, p = 0.0011; PFS = 0.65, p = 0.033), and Ensemble-DL (C-index: OS = 0.69, p = 0.0028; PFS = 0.66, p = 0.044). The MMF system effectively stratified patients across clinical subgroups and demonstrated interpretability through activation maps and radiomic correlations. Differential gene expression analysis revealed enrichment of the PI3K/Akt pathway in patients identified by the MMF system. The MMF system provides an interpretable, clinically applicable approach to guide personalized ICI treatment in unresectable HCC.

Sex-estimation method for three-dimensional shapes of the skull and skull parts using machine learning.

Imaizumi K, Usui S, Nagata T, Hayakawa H, Shiotani S

pubmed logopapersJun 14 2025
Sex estimation is an indispensable test for identifying skeletal remains in the field of forensic anthropology. We developed a novel sex-estimation method for skulls and several parts of the skull using machine learning. A total of 240 skull shapes were obtained from postmortem computed tomography scans. The shapes of the whole skull, cranium, and mandible were simplified by wrapping them with virtual elastic film. These were then transformed into homologous shape models. Homologous models of the cranium and mandible were segmented into six regions containing well-known sexually dimorphic areas. Shape data were reduced in dimensionality by principal component analysis (PCA) or partial least squares regression (PLS). The components of PCA and PLS were applied to a support vector machine (SVM), and the accuracy rates of sex estimation were assessed. High accuracy rates in sex estimation were observed in SVM after reducing the dimensionality of data with PLS. The rates exceeded 90 % in two of the nine regions examined, whereas the SVM with PCA components did not reach 90 % in any region. Virtual shapes created from very large and small scores of the first principal components of PLS closely resembled masculine and feminine models created by emphasizing the shape difference between the averaged shape of male and female skulls. Such similarities were observed in all skull regions examined, particularly in sexually dimorphic areas. Estimation models also achieved high estimation accuracies in newly prepared skull shapes, suggesting that the estimation method developed here may be sufficiently applicable to actual casework.

Predicting pulmonary hemodynamics in pediatric pulmonary arterial hypertension using cardiac magnetic resonance imaging and machine learning: an exploratory pilot study.

Chu H, Ferreira RJ, Lokhorst C, Douwes JM, Haarman MG, Willems TP, Berger RMF, Ploegstra MJ

pubmed logopapersJun 14 2025
Pulmonary arterial hypertension (PAH) significantly affects the pulmonary vasculature, requiring accurate estimation of mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance index (PVRi). Although cardiac catheterization is the gold standard for these measurements, it poses risks, especially in children. This pilot study explored how machine learning (ML) can predict pulmonary hemodynamics from non-invasive cardiac magnetic resonance (CMR) cine images in pediatric PAH patients. A retrospective analysis of 40 CMR studies from children with PAH using a four-fold stratified group cross-validation was conducted. The endpoints were severity profiles of mPAP and PVRi, categorised as 'low', 'high', and 'extreme'. Deep learning (DL) and traditional ML models were optimized through hyperparameter tuning. Receiver operating characteristic curves and area under the curve (AUC) were used as the primary evaluation metrics. DL models utilizing CMR cine imaging showed the best potential for predicting mPAP and PVRi severity profiles on test folds (AUC<sub>mPAP</sub>=0.82 and AUC<sub>PVRi</sub>=0.73). True positive rates (TPR) for predicting low, high, and extreme mPAP were 5/10, 11/16, and 11/14, respectively. TPR for predicting low, high, and extreme PVRi were 5/13, 14/15, and 7/12, respectively. Optimal DL models only used spatial patterns from consecutive CMR cine frames to maximize prediction performance. This exploratory pilot study demonstrates the potential of DL leveraging CMR imaging for non-invasive prediction of mPAP and PVRi in pediatric PAH. While preliminary, these findings may lay the groundwork for future advancements in CMR imaging in pediatric PAH, offering a pathway to safer disease monitoring and reduced reliance on invasive cardiac catheterization.

Radiomic Analysis of Molecular Magnetic Resonance Imaging of Aortic Atherosclerosis in Rabbits.

Lee H

pubmed logopapersJun 13 2025
Atherosclerosis involves not only the narrowing of blood vessels and plaque accumulation but also changes in plaque composition and stability, all of which are critical for disease progression. Conventional imaging techniques such as magnetic resonance angiography (MRA) and digital subtraction angiography (DSA) primarily assess luminal narrowing and plaque size, but have limited capability in identifying plaque instability and inflammation within the vascular muscle wall. This study aimed to develop and evaluate a novel imaging approach using ligand-modified nanomagnetic contrast (lmNMC) nanoprobes in combination with molecular magnetic resonance imaging (mMRI) to visualize and quantify vascular inflammation and plaque characteristics in a rabbit model of atherosclerosis. A rabbit model of atherosclerosis was established and underwent mMRI before and after administration of lmNMC nanoprobes. Radiomic features were extracted from segmented images using discrete wavelet transform (DWT) to assess spatial frequency changes and gray-level co-occurrence matrix (GLCM) analysis to evaluate textural properties. Further radiomic analysis was performed using neural network-based regression and clustering, including the application of self-organizing maps (SOMs) to validate the consistency of radiomic pattern between training and testing data. Radiomic analysis revealed significant changes in spatial frequency between pre- and post-contrast images in both the horizontal and vertical directions. GLCM analysis showed an increase in contrast from 0.08463 to 0.1021 and a slight decrease in homogeneity from 0.9593 to 0.9540. Energy values declined from 0.2256 to 0.2019, while correlation increased marginally from 0.9659 to 0.9708. Neural network regression demonstrated strong convergence between target and output coordinates. Additionally, SOM clustering revealed consistent weight locations and neighbor distances across datasets, supporting the reliability of the radiomic validation. The integration of lmNMC nanoprobes with mMRI enables detailed visualization of atherosclerotic plaques and surrounding vascular inflammation in a preclinical model. This method shows promise for enhancing the characterization of unstable plaques and may facilitate early detection of high-risk atherosclerotic lesions, potentially improving diagnostic and therapeutic strategies.

The Machine Learning Models in Major Cardiovascular Adverse Events Prediction Based on Coronary Computed Tomography Angiography: Systematic Review.

Ma Y, Li M, Wu H

pubmed logopapersJun 13 2025
Coronary computed tomography angiography (CCTA) has emerged as the first-line noninvasive imaging test for patients at high risk of coronary artery disease (CAD). When combined with machine learning (ML), it provides more valid evidence in diagnosing major adverse cardiovascular events (MACEs). Radiomics provides informative multidimensional features that can help identify high-risk populations and can improve the diagnostic performance of CCTA. However, its role in predicting MACEs remains highly debated. We evaluated the diagnostic value of ML models constructed using radiomic features extracted from CCTA in predicting MACEs, and compared the performance of different learning algorithms and models, thereby providing clinical recommendations for the diagnosis, treatment, and prognosis of MACEs. We comprehensively searched 5 online databases, Cochrane Library, Web of Science, Elsevier, CNKI, and PubMed, up to September 10, 2024, for original studies that used ML models among patients who underwent CCTA to predict MACEs and reported clinical outcomes and endpoints related to it. Risk of bias in the ML models was assessed by the Prediction Model Risk of Bias Assessment Tool, while the radiomics quality score (RQS) was used to evaluate the methodological quality of the radiomics prediction model development and validation. We also followed the TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) guidelines to ensure transparency of ML models included. Meta-analysis was performed using Meta-DiSc software (version 1.4), which included the I² score and Cochran Q test, along with StataMP 17 (StataCorp) to assess heterogeneity and publication bias. Due to the high heterogeneity observed, subgroup analysis was conducted based on different model groups. Ten studies were included in the analysis, 5 (50%) of which differentiated between training and testing groups, where the training set collected 17 kinds of models and the testing set gathered 26 models. The pooled area under the receiver operating characteristic (AUROC) curve for ML models predicting MACEs was 0.7879 in the training set and 0.7981 in the testing set. Logistic regression (LR), the most commonly used algorithm, achieved an AUROC of 0.8229 in the testing group and 0.7983 in the training group. Non-LR models yielded AUROCs of 0.7390 in the testing set and 0.7648 in the training set, while the random forest (RF) models reached an AUROC of 0.8444 in the training group. Study limitations included a limited number of studies, high heterogeneity, and the types of included studies. The performance of ML models for predicting MACEs was found to be superior to that of general models based on basic feature extraction and integration from CCTA. Specifically, LR-based ML diagnostic models demonstrated significant clinical potential, particularly when combined with clinical features, and are worth further validation through more clinical trials. PROSPERO CRD42024596364; https://www.crd.york.ac.uk/PROSPERO/view/CRD42024596364.
Page 63 of 1341340 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.