Sort by:
Page 63 of 65646 results

Real-time brain tumour diagnoses using a novel lightweight deep learning model.

Alnageeb MHO, M H S

pubmed logopapersMay 6 2025
Brain tumours continue to be a primary cause of worldwide death, highlighting the critical need for effective and accurate diagnostic tools. This article presents MK-YOLOv8, an innovative lightweight deep learning framework developed for the real-time detection and categorization of brain tumours from MRI images. Based on the YOLOv8 architecture, the proposed model incorporates Ghost Convolution, the C3Ghost module, and the SPPELAN module to improve feature extraction and substantially decrease computational complexity. An x-small object detection layer has been added, supporting precise detection of small and x-small tumours, which is crucial for early diagnosis. Trained on the Figshare Brain Tumour (FBT) dataset comprising (3,064) MRI images, MK-YOLOv8 achieved a mean Average Precision (mAP) of 99.1% at IoU (0.50) and 88.4% at IoU (0.50-0.95), outperforming YOLOv8 (98% and 78.8%, respectively). Glioma recall improved by 26%, underscoring the enhanced sensitivity to challenging tumour types. With a computational footprint of only 96.9 GFLOPs (representing 37.5% of YOYOLOv8x'sFLOPs) and utilizing 12.6 million parameters, a mere 18.5% of YOYOLOv8's parameters, MK-YOLOv8 delivers high efficiency with reduced resource demands. Also, it trained on the Br35H dataset (801 images) to guarantee the model's robustness and generalization; it achieved a mAP of 98.6% at IoU (0.50). The suggested model operates at 62 frames per second (FPS) and is suited for real-time clinical processes. These developments establish MK-YOLOv8 as an innovative framework, overcoming challenges in tiny tumour identification and providing a generalizable, adaptable, and precise detection approach for brain tumour diagnostics in clinical settings.

Multi-task learning for joint prediction of breast cancer histological indicators in dynamic contrast-enhanced magnetic resonance imaging.

Sun R, Li X, Han B, Xie Y, Nie S

pubmed logopapersMay 6 2025
Achieving efficient analysis of multiple pathological indicators has great significance for breast cancer prognosis and therapeutic decision-making. In this study, we aim to explore a deep multi-task learning (MTL) framework for collaborative prediction of histological grade and proliferation marker (Ki-67) status in breast cancer using multi-phase dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). In the novel design of hybrid multi-task architecture (HMT-Net), co-representative features are explicitly distilled using a feature extraction backbone. A customized prediction network is then introduced to perform soft-parameter sharing between two correlated tasks. Specifically, task-common and task-specific knowledge is transmitted into tower layers for informative interactions. Furthermore, low-level feature maps containing tumor edges and texture details are recaptured by a hard-parameter sharing branch, which are then incorporated into the tower layer for each subtask. Finally, the probabilities of two histological indicators, predicted in the multi-phase DCE-MRI, are separately fused using a decision-level fusion strategy. Experimental results demonstrate that the proposed HMT-Net achieves optimal discriminative performance over other recent MTL architectures and deep models based on single image series, with the area under the receiver operating characteristic curve of 0.908 for tumor grade and 0.694 for Ki-67 status. Benefiting from the innovative HMT-Net, our proposed method elucidates its strong robustness and flexibility in the collaborative prediction task of breast biomarkers. Multi-phase DCE-MRI is expected to contribute valuable dynamic information for breast cancer pathological assessment in a non-invasive manner.

Brain connectome gradient dysfunction in patients with end-stage renal disease and its association with clinical phenotype and cognitive deficits.

Li P, Li N, Ren L, Yang YP, Zhu XY, Yuan HJ, Luo ZY, Mu JY, Wang W, Zhang M

pubmed logopapersMay 6 2025
A cortical hierarchical architecture is vital for encoding and integrating sensorimotor-to-cognitive information. However, whether this gradient structure is disrupted in end-stage renal disease (ESRD) patients and how this disruption provides valuable information for potential clinical symptoms remain unknown. We prospectively enrolled 77 ESRD patients and 48 healthy controls. Using resting-state functional magnetic resonance imaging, we studied ESRD-related hierarchical alterations. The Neurosynth platform and machine-learning models with 10-fold cross-validation were applied. ESRD patients had abnormal gradient metrics in core regions of the default mode network, sensorimotor network, and frontoparietal network. These changes correlated with creatinine, depression, and cognitive functions. A logistic regression classifier achieved a maximum performance of 84.8% accuracy and 0.901 area under the ROC curve (AUC). Our results highlight hierarchical imbalances in ESRD patients that correlate with diverse cognitive deficits, which may be used as potential neuroimaging markers for clinical symptoms.

A novel transfer learning framework for non-uniform conductivity estimation with limited data in personalized brain stimulation.

Kubota Y, Kodera S, Hirata A

pubmed logopapersMay 6 2025
<i>Objective</i>. Personalized transcranial magnetic stimulation (TMS) requires individualized head models that incorporate non-uniform conductivity to enable target-specific stimulation. Accurately estimating non-uniform conductivity in individualized head models remains a challenge due to the difficulty of obtaining precise ground truth data. To address this issue, we have developed a novel transfer learning-based approach for automatically estimating non-uniform conductivity in a human head model with limited data.<i>Approach</i>. The proposed method complements the limitations of the previous conductivity network (CondNet) and improves the conductivity estimation accuracy. This method generates a segmentation model from T1- and T2-weighted magnetic resonance images, which is then used for conductivity estimation via transfer learning. To enhance the model's representation capability, a Transformer was incorporated into the segmentation model, while the conductivity estimation model was designed using a combination of Attention Gates and Residual Connections, enabling efficient learning even with a small amount of data.<i>Main results</i>. The proposed method was evaluated using 1494 images, demonstrating a 2.4% improvement in segmentation accuracy and a 29.1% increase in conductivity estimation accuracy compared with CondNet. Furthermore, the proposed method achieved superior conductivity estimation accuracy even with only three training cases, outperforming CondNet, which was trained on an adequate number of cases. The conductivity maps generated by the proposed method yielded better results in brain electrical field simulations than CondNet.<i>Significance</i>. These findings demonstrate the high utility of the proposed method in brain electrical field simulations and suggest its potential applicability to other medical image analysis tasks and simulations.

Phenotype-Guided Generative Model for High-Fidelity Cardiac MRI Synthesis: Advancing Pretraining and Clinical Applications

Ziyu Li, Yujian Hu, Zhengyao Ding, Yiheng Mao, Haitao Li, Fan Yi, Hongkun Zhang, Zhengxing Huang

arxiv logopreprintMay 6 2025
Cardiac Magnetic Resonance (CMR) imaging is a vital non-invasive tool for diagnosing heart diseases and evaluating cardiac health. However, the limited availability of large-scale, high-quality CMR datasets poses a major challenge to the effective application of artificial intelligence (AI) in this domain. Even the amount of unlabeled data and the health status it covers are difficult to meet the needs of model pretraining, which hinders the performance of AI models on downstream tasks. In this study, we present Cardiac Phenotype-Guided CMR Generation (CPGG), a novel approach for generating diverse CMR data that covers a wide spectrum of cardiac health status. The CPGG framework consists of two stages: in the first stage, a generative model is trained using cardiac phenotypes derived from CMR data; in the second stage, a masked autoregressive diffusion model, conditioned on these phenotypes, generates high-fidelity CMR cine sequences that capture both structural and functional features of the heart in a fine-grained manner. We synthesized a massive amount of CMR to expand the pretraining data. Experimental results show that CPGG generates high-quality synthetic CMR data, significantly improving performance on various downstream tasks, including diagnosis and cardiac phenotypes prediction. These gains are demonstrated across both public and private datasets, highlighting the effectiveness of our approach. Code is availabel at https://anonymous.4open.science/r/CPGG.

From manual clinical criteria to machine learning algorithms: Comparing outcome endpoints derived from diverse electronic health record data modalities.

Chappidi S, Belue MJ, Harmon SA, Jagasia S, Zhuge Y, Tasci E, Turkbey B, Singh J, Camphausen K, Krauze AV

pubmed logopapersMay 1 2025
Progression free survival (PFS) is a critical clinical outcome endpoint during cancer management and treatment evaluation. Yet, PFS is often missing from publicly available datasets due to the current subjective, expert, and time-intensive nature of generating PFS metrics. Given emerging research in multi-modal machine learning (ML), we explored the benefits and challenges associated with mining different electronic health record (EHR) data modalities and automating extraction of PFS metrics via ML algorithms. We analyzed EHR data from 92 pathology-proven GBM patients, obtaining 233 corticosteroid prescriptions, 2080 radiology reports, and 743 brain MRI scans. Three methods were developed to derive clinical PFS: 1) frequency analysis of corticosteroid prescriptions, 2) natural language processing (NLP) of reports, and 3) computer vision (CV) volumetric analysis of imaging. Outputs from these methods were compared to manually annotated clinical guideline PFS metrics. Employing data-driven methods, standalone progression rates were 63% (prescription), 78% (NLP), and 54% (CV), compared to the 99% progression rate from manually applied clinical guidelines using integrated data sources. The prescription method identified progression an average of 5.2 months later than the clinical standard, while the CV and NLP algorithms identified progression earlier by 2.6 and 6.9 months, respectively. While lesion growth is a clinical guideline progression indicator, only half of patients exhibited increasing contrast-enhancing tumor volumes during scan-based CV analysis. Our results indicate that data-driven algorithms can extract tumor progression outcomes from existing EHR data. However, ML methods are subject to varying availability bias, supporting contextual information, and pre-processing resource burdens that influence the extracted PFS endpoint distributions. Our scan-based CV results also suggest that the automation of clinical criteria may not align with human intuition. Our findings indicate a need for improved data source integration, validation, and revisiting of clinical criteria in parallel to multi-modal ML algorithm development.

Automated Bi-Ventricular Segmentation and Regional Cardiac Wall Motion Analysis for Rat Models of Pulmonary Hypertension.

Niglas M, Baxan N, Ashek A, Zhao L, Duan J, O'Regan D, Dawes TJW, Nien-Chen C, Xie C, Bai W, Zhao L

pubmed logopapersApr 1 2025
Artificial intelligence-based cardiac motion mapping offers predictive insights into pulmonary hypertension (PH) disease progression and its impact on the heart. We proposed an automated deep learning pipeline for bi-ventricular segmentation and 3D wall motion analysis in PH rodent models for bridging the clinical developments. A data set of 163 short-axis cine cardiac magnetic resonance scans were collected longitudinally from monocrotaline (MCT) and Sugen-hypoxia (SuHx) PH rats and used for training a fully convolutional network for automated segmentation. The model produced an accurate annotation in < 1 s for each scan (Dice metric > 0.92). High-resolution atlas fitting was performed to produce 3D cardiac mesh models and calculate the regional wall motion between end-diastole and end-systole. Prominent right ventricular hypokinesia was observed in PH rats (-37.7% ± 12.2 MCT; -38.6% ± 6.9 SuHx) compared to healthy controls, attributed primarily to the loss in basal longitudinal and apical radial motion. This automated bi-ventricular rat-specific pipeline provided an efficient and novel translational tool for rodent studies in alignment with clinical cardiac imaging AI developments.

Neurovision: A deep learning driven web application for brain tumour detection using weight-aware decision approach.

Santhosh TRS, Mohanty SN, Pradhan NR, Khan T, Derbali M

pubmed logopapersJan 1 2025
In recent times, appropriate diagnosis of brain tumour is a crucial task in medical system. Therefore, identification of a potential brain tumour is challenging owing to the complex behaviour and structure of the human brain. To address this issue, a deep learning-driven framework consisting of four pre-trained models viz DenseNet169, VGG-19, Xception, and EfficientNetV2B2 is developed to classify potential brain tumours from medical resonance images. At first, the deep learning models are trained and fine-tuned on the training dataset, obtained validation scores of trained models are considered as model-wise weights. Then, trained models are subsequently evaluated on the test dataset to generate model-specific predictions. In the weight-aware decision module, the class-bucket of a probable output class is updated with the weights of deep models when their predictions match the class. Finally, the bucket with the highest aggregated value is selected as the final output class for the input image. A novel weight-aware decision mechanism is a key feature of this framework, which effectively deals tie situations in multi-class classification compared to conventional majority-based techniques. The developed framework has obtained promising results of 98.7%, 97.52%, and 94.94% accuracy on three different datasets. The entire framework is seamlessly integrated into an end-to-end web-application for user convenience. The source code, dataset and other particulars are publicly released at https://github.com/SaiSanthosh1508/Brain-Tumour-Image-classification-app [Rishik Sai Santhosh, "Brain Tumour Image Classification Application," https://github.com/SaiSanthosh1508/Brain-Tumour-Image-classification-app] for academic, research and other non-commercial usage.

Investigating methods to enhance interpretability and performance in cardiac MRI for myocardial scarring diagnosis using convolutional neural network classification and One Match.

Udin MH, Armstrong S, Kai A, Doyle ST, Pokharel S, Ionita CN, Sharma UC

pubmed logopapersJan 1 2025
Machine learning (ML) classification of myocardial scarring in cardiac MRI is often hindered by limited explainability, particularly with convolutional neural networks (CNNs). To address this, we developed One Match (OM), an algorithm that builds on template matching to improve on both the explainability and performance of ML myocardial scaring classification. By incorporating OM, we aim to foster trust in AI models for medical diagnostics and demonstrate that improved interpretability does not have to compromise classification accuracy. Using a cardiac MRI dataset from 279 patients, this study evaluates One Match, which classifies myocardial scarring in images by matching each image to a set of labeled template images. It uses the highest correlation score from these matches for classification and is compared to a traditional sequential CNN. Enhancements such as autodidactic enhancement (AE) and patient-level classifications (PLCs) were applied to improve the predictive accuracy of both methods. Results are reported as follows: accuracy, sensitivity, specificity, precision, and F1-score. The highest classification performance was observed with the OM algorithm when enhanced by both AE and PLCs, 95.3% accuracy, 92.3% sensitivity, 96.7% specificity, 92.3% precision, and 92.3% F1-score, marking a significant improvement over the base configurations. AE alone had a positive impact on OM increasing accuracy from 89.0% to 93.2%, but decreased the accuracy of the CNN from 85.3% to 82.9%. In contrast, PLCs improved accuracy for both the CNN and OM, raising the CNN's accuracy by 4.2% and OM's by 7.4%. This study demonstrates the effectiveness of OM in classifying myocardial scars, particularly when enhanced with AE and PLCs. The interpretability of OM also enabled the examination of misclassifications, providing insights that could accelerate development and foster greater trust among clinical stakeholders.

Recognition of flight cadets brain functional magnetic resonance imaging data based on machine learning analysis.

Ye L, Weng S, Yan D, Ma S, Chen X

pubmed logopapersJan 1 2025
The rapid advancement of the civil aviation industry has attracted significant attention to research on pilots. However, the brain changes experienced by flight cadets following their training remain, to some extent, an unexplored territory compared to those of the general population. The aim of this study was to examine the impact of flight training on brain function by employing machine learning(ML) techniques. We collected resting-state functional magnetic resonance imaging (resting-state fMRI) data from 79 flight cadets and ground program cadets, extracting blood oxygenation level-dependent (BOLD) signal, amplitude of low frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) metrics as feature inputs for ML models. After conducting feature selection using a two-sample t-test, we established various ML classification models, including Extreme Gradient Boosting (XGBoost), Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), and Gaussian Naive Bayes (GNB). Comparative analysis of the model results revealed that the LR classifier based on BOLD signals could accurately distinguish flight cadets from the general population, achieving an AUC of 83.75% and an accuracy of 0.93. Furthermore, an analysis of the features contributing significantly to the ML classification models indicated that these features were predominantly located in brain regions associated with auditory-visual processing, motor function, emotional regulation, and cognition, primarily within the Default Mode Network (DMN), Visual Network (VN), and SomatoMotor Network (SMN). These findings suggest that flight-trained cadets may exhibit enhanced functional dynamics and cognitive flexibility.
Page 63 of 65646 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.