Sort by:
Page 61 of 81808 results

Explicit Abnormality Extraction for Unsupervised Motion Artifact Reduction in Magnetic Resonance Imaging.

Zhou Y, Li H, Liu J, Kong Z, Huang T, Ahn E, Lv Z, Kim J, Feng DD

pubmed logopapersJun 1 2025
Motion artifacts compromise the quality of magnetic resonance imaging (MRI) and pose challenges to achieving diagnostic outcomes and image-guided therapies. In recent years, supervised deep learning approaches have emerged as successful solutions for motion artifact reduction (MAR). One disadvantage of these methods is their dependency on acquiring paired sets of motion artifact-corrupted (MA-corrupted) and motion artifact-free (MA-free) MR images for training purposes. Obtaining such image pairs is difficult and therefore limits the application of supervised training. In this paper, we propose a novel UNsupervised Abnormality Extraction Network (UNAEN) to alleviate this problem. Our network is capable of working with unpaired MA-corrupted and MA-free images. It converts the MA-corrupted images to MA-reduced images by extracting abnormalities from the MA-corrupted images using a proposed artifact extractor, which intercepts the residual artifact maps from the MA-corrupted MR images explicitly, and a reconstructor to restore the original input from the MA-reduced images. The performance of UNAEN was assessed by experimenting with various publicly available MRI datasets and comparing them with state-of-the-art methods. The quantitative evaluation demonstrates the superiority of UNAEN over alternative MAR methods and visually exhibits fewer residual artifacts. Our results substantiate the potential of UNAEN as a promising solution applicable in real-world clinical environments, with the capability to enhance diagnostic accuracy and facilitate image-guided therapies.

Automated Ensemble Multimodal Machine Learning for Healthcare.

Imrie F, Denner S, Brunschwig LS, Maier-Hein K, van der Schaar M

pubmed logopapersJun 1 2025
The application of machine learning in medicine and healthcare has led to the creation of numerous diagnostic and prognostic models. However, despite their success, current approaches generally issue predictions using data from a single modality. This stands in stark contrast with clinician decision-making which employs diverse information from multiple sources. While several multimodal machine learning approaches exist, significant challenges in developing multimodal systems remain that are hindering clinical adoption. In this paper, we introduce a multimodal framework, AutoPrognosis-M, that enables the integration of structured clinical (tabular) data and medical imaging using automated machine learning. AutoPrognosis-M incorporates 17 imaging models, including convolutional neural networks and vision transformers, and three distinct multimodal fusion strategies. In an illustrative application using a multimodal skin lesion dataset, we highlight the importance of multimodal machine learning and the power of combining multiple fusion strategies using ensemble learning. We have open-sourced our framework as a tool for the community and hope it will accelerate the uptake of multimodal machine learning in healthcare and spur further innovation.

MedKAFormer: When Kolmogorov-Arnold Theorem Meets Vision Transformer for Medical Image Representation.

Wang G, Zhu Q, Song C, Wei B, Li S

pubmed logopapersJun 1 2025
Vision Transformers (ViTs) suffer from high parameter complexity because they rely on Multi-layer Perceptrons (MLPs) for nonlinear representation. This issue is particularly challenging in medical image analysis, where labeled data is limited, leading to inadequate feature representation. Existing methods have attempted to optimize either the patch embedding stage or the non-embedding stage of ViTs. Still, they have struggled to balance effective modeling, parameter complexity, and data availability. Recently, the Kolmogorov-Arnold Network (KAN) was introduced as an alternative to MLPs, offering a potential solution to the large parameter issue in ViTs. However, KAN cannot be directly integrated into ViT due to challenges such as handling 2D structured data and dimensionality catastrophe. To solve this problem, we propose MedKAFormer, the first ViT model to incorporate the Kolmogorov-Arnold (KA) theorem for medical image representation. It includes a Dynamic Kolmogorov-Arnold Convolution (DKAC) layer for flexible nonlinear modeling in the patch embedding stage. Additionally, it introduces a Nonlinear Sparse Token Mixer (NSTM) and a Nonlinear Dynamic Filter (NDF) in the non-embedding stage. These components provide comprehensive nonlinear representation while reducing model overfitting. MedKAFormer reduces parameter complexity by 85.61% compared to ViT-Base and achieves competitive results on 14 medical datasets across various imaging modalities and structures.

IM-Diff: Implicit Multi-Contrast Diffusion Model for Arbitrary Scale MRI Super-Resolution.

Liu L, Zou J, Xu C, Wang K, Lyu J, Xu X, Hu Z, Qin J

pubmed logopapersJun 1 2025
Diffusion models have garnered significant attention for MRI Super-Resolution (SR) and have achieved promising results. However, existing diffusion-based SR models face two formidable challenges: 1) insufficient exploitation of complementary information from multi-contrast images, which hinders the faithful reconstruction of texture details and anatomical structures; and 2) reliance on fixed magnification factors, such as 2× or 4×, which is impractical for clinical scenarios that require arbitrary scale magnification. To circumvent these issues, this paper introduces IM-Diff, an implicit multi-contrast diffusion model for arbitrary-scale MRI SR, leveraging the merits of both multi-contrast information and the continuous nature of implicit neural representation (INR). Firstly, we propose an innovative hierarchical multi-contrast fusion (HMF) module with reference-aware cross Mamba (RCM) to effectively incorporate target-relevant information from the reference image into the target image, while ensuring a substantial receptive field with computational efficiency. Secondly, we introduce multiple wavelet INR magnification (WINRM) modules into the denoising process by integrating the wavelet implicit neural non-linearity, enabling effective learning of continuous representations of MR images. The involved wavelet activation enhances space-frequency concentration, further bolstering representation accuracy and robustness in INR. Extensive experiments on three public datasets demonstrate the superiority of our method over existing state-of-the-art SR models across various magnification factors.

A Trusted Medical Image Zero-Watermarking Scheme Based on DCNN and Hyperchaotic System.

Xiang R, Liu G, Dang M, Wang Q, Pan R

pubmed logopapersJun 1 2025
The zero-watermarking methods provide a means of lossless, which was adopted to protect medical image copyright requiring high integrity. However, most existing studies have only focused on robustness and there has been little discussion about the analysis and experiment on discriminability. Therefore, this paper proposes a trusted robust zero-watermarking scheme for medical images based on Deep convolution neural network (DCNN) and the hyperchaotic encryption system. Firstly, the medical image is converted into several feature map matrices by the specific convolution layer of DCNN. Then, a stable Gram matrix is obtained by calculating the colinear correlation between different channels in feature map matrices. Finally, the Gram matrixes of the medical image and the feature map matrixes of the watermark image are fused by the trained DCNN to generate the zero-watermark. Meanwhile, we propose two feature evaluation criteria for finding differentiated eigenvalues. The eigenvalue is used as the explicit key to encrypt the generated zero-watermark by Lorenz hyperchaotic encryption, which enhances security and discriminability. The experimental results show that the proposed scheme can resist common image attacks and geometric attacks, and is distinguishable in experiments, being applicable for the copyright protection of medical images.

Multi-Objective Evolutionary Optimization Boosted Deep Neural Networks for Few-Shot Medical Segmentation With Noisy Labels.

Li H, Zhang Y, Zuo Q

pubmed logopapersJun 1 2025
Fully-supervised deep neural networks have achieved remarkable progress in medical image segmentation, yet they heavily rely on extensive manually labeled data and exhibit inflexibility for unseen tasks. Few-shot segmentation (FSS) addresses these issues by predicting unseen classes from a few labeled support examples. However, most existing FSS models struggle to generalize to diverse target tasks distinct from training domains. Furthermore, designing promising network architectures for such tasks is expertise-intensive and laborious. In this paper, we introduce MOE-FewSeg, a novel automatic design method for FSS architectures. Specifically, we construct a U-shaped encoder-decoder search space that incorporates capabilities for information interaction and feature selection, thereby enabling architectures to leverage prior knowledge from publicly available datasets across diverse domains for improved prediction of various target tasks. Given the potential conflicts among disparate target tasks, we formulate the multi-task problem as a multi-objective optimization problem. We employ a multi-objective genetic algorithm to identify the Pareto-optimal architectures for these target tasks within this search space. Furthermore, to mitigate the impact of noisy labels due to dataset quality variations, we propose a noise-robust loss function named NRL, which encourages the model to de-emphasize larger loss values. Empirical results demonstrate that MOE-FewSeg outperforms manually designed architectures and other related approaches.

Adaptive Weighting Based Metal Artifact Reduction in CT Images.

Wang H, Wu Y, Wang Y, Wei D, Wu X, Ma J, Zheng Y

pubmed logopapersJun 1 2025
Against the metal artifact reduction (MAR) task in computed tomography (CT) imaging, most of the existing deep-learning-based approaches generally select a single Hounsfield unit (HU) window followed by a normalization operation to preprocess CT images. However, in practical clinical scenarios, different body tissues and organs are often inspected under varying window settings for good contrast. The methods trained on a fixed single window would lead to insufficient removal of metal artifacts when being transferred to deal with other windows. To alleviate this problem, few works have proposed to reconstruct the CT images under multiple-window configurations. Albeit achieving good reconstruction performance for different windows, they adopt to directly supervise each window learning in an equal weighting way based on the training set. To improve the learning flexibility and model generalizability, in this paper, we propose an adaptive weighting algorithm, called AdaW, for the multiple-window metal artifact reduction, which can be applied to different deep MAR network backbones. Specifically, we first formulate the multiple window learning task as a bi-level optimization problem. Then we derive an adaptive weighting optimization algorithm where the learning process for MAR under each window is automatically weighted via a learning-to-learn paradigm based on the training set and validation set. This rationality is finely substantiated through theoretical analysis. Based on different network backbones, experimental comparisons executed on five datasets with different body sites comprehensively validate the effectiveness of AdaW in helping improve the generalization performance as well as its good applicability. We will release the code at https://github.com/hongwang01/AdaW.

CT-SDM: A Sampling Diffusion Model for Sparse-View CT Reconstruction Across Various Sampling Rates.

Yang L, Huang J, Yang G, Zhang D

pubmed logopapersJun 1 2025
Sparse views X-ray computed tomography has emerged as a contemporary technique to mitigate radiation dose. Because of the reduced number of projection views, traditional reconstruction methods can lead to severe artifacts. Recently, research studies utilizing deep learning methods has made promising progress in removing artifacts for Sparse-View Computed Tomography (SVCT). However, given the limitations on the generalization capability of deep learning models, current methods usually train models on fixed sampling rates, affecting the usability and flexibility of model deployment in real clinical settings. To address this issue, our study proposes a adaptive reconstruction method to achieve high-performance SVCT reconstruction at various sampling rate. Specifically, we design a novel imaging degradation operator in the proposed sampling diffusion model for SVCT (CT-SDM) to simulate the projection process in the sinogram domain. Thus, the CT-SDM can gradually add projection views to highly undersampled measurements to generalize the full-view sinograms. By choosing an appropriate starting point in diffusion inference, the proposed model can recover the full-view sinograms from various sampling rate with only one trained model. Experiments on several datasets have verified the effectiveness and robustness of our approach, demonstrating its superiority in reconstructing high-quality images from sparse-view CT scans across various sampling rates.

MedBookVQA: A Systematic and Comprehensive Medical Benchmark Derived from Open-Access Book

Sau Lai Yip, Sunan He, Yuxiang Nie, Shu Pui Chan, Yilin Ye, Sum Ying Lam, Hao Chen

arxiv logopreprintJun 1 2025
The accelerating development of general medical artificial intelligence (GMAI), powered by multimodal large language models (MLLMs), offers transformative potential for addressing persistent healthcare challenges, including workforce deficits and escalating costs. The parallel development of systematic evaluation benchmarks emerges as a critical imperative to enable performance assessment and provide technological guidance. Meanwhile, as an invaluable knowledge source, the potential of medical textbooks for benchmark development remains underexploited. Here, we present MedBookVQA, a systematic and comprehensive multimodal benchmark derived from open-access medical textbooks. To curate this benchmark, we propose a standardized pipeline for automated extraction of medical figures while contextually aligning them with corresponding medical narratives. Based on this curated data, we generate 5,000 clinically relevant questions spanning modality recognition, disease classification, anatomical identification, symptom diagnosis, and surgical procedures. A multi-tier annotation system categorizes queries through hierarchical taxonomies encompassing medical imaging modalities (42 categories), body anatomies (125 structures), and clinical specialties (31 departments), enabling nuanced analysis across medical subdomains. We evaluate a wide array of MLLMs, including proprietary, open-sourced, medical, and reasoning models, revealing significant performance disparities across task types and model categories. Our findings highlight critical capability gaps in current GMAI systems while establishing textbook-derived multimodal benchmarks as essential evaluation tools. MedBookVQA establishes textbook-derived benchmarking as a critical paradigm for advancing clinical AI, exposing limitations in GMAI systems while providing anatomically structured performance metrics across specialties.
Page 61 of 81808 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.