Sort by:
Page 60 of 99990 results

Structural uncertainty estimation for medical image segmentation.

Yang B, Zhang X, Zhang H, Li S, Higashita R, Liu J

pubmed logopapersJul 1 2025
Precise segmentation and uncertainty estimation are crucial for error identification and correction in medical diagnostic assistance. Existing methods mainly rely on pixel-wise uncertainty estimations. They (1) neglect the global context, leading to erroneous uncertainty indications, and (2) bring attention interference, resulting in the waste of extensive details and potential understanding confusion. In this paper, we propose a novel structural uncertainty estimation method, based on Convolutional Neural Networks (CNN) and Active Shape Models (ASM), named SU-ASM, which incorporates global shape information for providing precise segmentation and uncertainty estimation. The SU-ASM consists of three components. Firstly, multi-task generation provides multiple outcomes to assist ASM initialization and shape optimization via a multi-task learning module. Secondly, information fusion involves the creation of a Combined Boundary Probability (CBP) and along with a rapid shape initialization algorithm, Key Landmark Template Matching (KLTM), to enhance boundary reliability and select appropriate shape templates. Finally, shape model fitting where multiple shape templates are matched to the CBP while maintaining their intrinsic shape characteristics. Fitted shapes generate segmentation results and structural uncertainty estimations. The SU-ASM has been validated on cardiac ultrasound dataset, ciliary muscle dataset of the anterior eye segment, and the chest X-ray dataset. It outperforms state-of-the-art methods in terms of segmentation and uncertainty estimation.

The Evolution of Radiology Image Annotation in the Era of Large Language Models.

Flanders AE, Wang X, Wu CC, Kitamura FC, Shih G, Mongan J, Peng Y

pubmed logopapersJul 1 2025
Although there are relatively few diverse, high-quality medical imaging datasets on which to train computer vision artificial intelligence models, even fewer datasets contain expertly classified observations that can be repurposed to train or test such models. The traditional annotation process is laborious and time-consuming. Repurposing annotations and consolidating similar types of annotations from disparate sources has never been practical. Until recently, the use of natural language processing to convert a clinical radiology report into labels required custom training of a language model for each use case. Newer technologies such as large language models have made it possible to generate accurate and normalized labels at scale, using only clinical reports and specific prompt engineering. The combination of automatically generated labels extracted and normalized from reports in conjunction with foundational image models provides a means to create labels for model training. This article provides a short history and review of the annotation and labeling process of medical images, from the traditional manual methods to the newest semiautomated methods that provide a more scalable solution for creating useful models more efficiently. <b>Keywords:</b> Feature Detection, Diagnosis, Semi-supervised Learning © RSNA, 2025.

Medical image translation with deep learning: Advances, datasets and perspectives.

Chen J, Ye Z, Zhang R, Li H, Fang B, Zhang LB, Wang W

pubmed logopapersJul 1 2025
Traditional medical image generation often lacks patient-specific clinical information, limiting its clinical utility despite enhancing downstream task performance. In contrast, medical image translation precisely converts images from one modality to another, preserving both anatomical structures and cross-modal features, thus enabling efficient and accurate modality transfer and offering unique advantages for model development and clinical practice. This paper reviews the latest advancements in deep learning(DL)-based medical image translation. Initially, it elaborates on the diverse tasks and practical applications of medical image translation. Subsequently, it provides an overview of fundamental models, including convolutional neural networks (CNNs), transformers, and state space models (SSMs). Additionally, it delves into generative models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), Autoregressive Models (ARs), diffusion Models, and flow Models. Evaluation metrics for assessing translation quality are discussed, emphasizing their importance. Commonly used datasets in this field are also analyzed, highlighting their unique characteristics and applications. Looking ahead, the paper identifies future trends, challenges, and proposes research directions and solutions in medical image translation. It aims to serve as a valuable reference and inspiration for researchers, driving continued progress and innovation in this area.

Rethinking boundary detection in deep learning-based medical image segmentation.

Lin Y, Zhang D, Fang X, Chen Y, Cheng KT, Chen H

pubmed logopapersJul 1 2025
Medical image segmentation is a pivotal task within the realms of medical image analysis and computer vision. While current methods have shown promise in accurately segmenting major regions of interest, the precise segmentation of boundary areas remains challenging. In this study, we propose a novel network architecture named CTO, which combines Convolutional Neural Networks (CNNs), Vision Transformer (ViT) models, and explicit edge detection operators to tackle this challenge. CTO surpasses existing methods in terms of segmentation accuracy and strikes a better balance between accuracy and efficiency, without the need for additional data inputs or label injections. Specifically, CTO adheres to the canonical encoder-decoder network paradigm, with a dual-stream encoder network comprising a mainstream CNN stream for capturing local features and an auxiliary StitchViT stream for integrating long-range dependencies. Furthermore, to enhance the model's ability to learn boundary areas, we introduce a boundary-guided decoder network that employs binary boundary masks generated by dedicated edge detection operators to provide explicit guidance during the decoding process. We validate the performance of CTO through extensive experiments conducted on seven challenging medical image segmentation datasets, namely ISIC 2016, PH2, ISIC 2018, CoNIC, LiTS17, BraTS, and BTCV. Our experimental results unequivocally demonstrate that CTO achieves state-of-the-art accuracy on these datasets while maintaining competitive model complexity. The codes have been released at: CTO.

MED-NCA: Bio-inspired medical image segmentation.

Kalkhof J, Ihm N, Köhler T, Gregori B, Mukhopadhyay A

pubmed logopapersJul 1 2025
The reliance on computationally intensive U-Net and Transformer architectures significantly limits their accessibility in low-resource environments, creating a technological divide that hinders global healthcare equity, especially in medical diagnostics and treatment planning. This divide is most pronounced in low- and middle-income countries, primary care facilities, and conflict zones. We introduced MED-NCA, Neural Cellular Automata (NCA) based segmentation models characterized by their low parameter count, robust performance, and inherent quality control mechanisms. These features drastically lower the barriers to high-quality medical image analysis in resource-constrained settings, allowing the models to run efficiently on hardware as minimal as a Raspberry Pi or a smartphone. Building upon the foundation laid by MED-NCA, this paper extends its validation across eight distinct anatomies, including the hippocampus and prostate (MRI, 3D), liver and spleen (CT, 3D), heart and lung (X-ray, 2D), breast tumor (Ultrasound, 2D), and skin lesion (Image, 2D). Our comprehensive evaluation demonstrates the broad applicability and effectiveness of MED-NCA in various medical imaging contexts, matching the performance of two magnitudes larger UNet models. Additionally, we introduce NCA-VIS, a visualization tool that gives insight into the inference process of MED-NCA and allows users to test its robustness by applying various artifacts. This combination of efficiency, broad applicability, and enhanced interpretability makes MED-NCA a transformative solution for medical image analysis, fostering greater global healthcare equity by making advanced diagnostics accessible in even the most resource-limited environments.

Adoption of artificial intelligence in healthcare: survey of health system priorities, successes, and challenges.

Poon EG, Lemak CH, Rojas JC, Guptill J, Classen D

pubmed logopapersJul 1 2025
The US healthcare system faces significant challenges, including clinician burnout, operational inefficiencies, and concerns about patient safety. Artificial intelligence (AI), particularly generative AI, has the potential to address these challenges, but its adoption, effectiveness, and barriers to implementation are not well understood. To evaluate the current state of AI adoption in US healthcare systems, assess successes and barriers to implementation during the early generative AI era. This cross-sectional survey was conducted in Fall 2024, and included 67 health systems members of the Scottsdale Institute, a collaborative of US non-profit healthcare organizations. Forty-three health systems completed the survey (64% response rate). Respondents provided data on the deployment status and perceived success of 37 AI use cases across 10 categories. The primary outcomes were the extent of AI use case development, piloting, or deployment, the degree of reported success for AI use cases, and the most significant barriers to adoption. Across the 43 responding health systems, AI adoption and perceptions of success varied significantly. Ambient Notes, a generative AI tool for clinical documentation, was the only use case with 100% of respondents reporting adoption activities, and 53% reported a high degree of success with using AI for Clinical Documentation. Imaging and radiology emerged as the most widely deployed clinical AI use case, with 90% of organizations reporting at least partial deployment, although successes with diagnostic use cases were limited. Similarly, many organizations have deployed AI for clinical risk stratification such as early sepsis detection, but only 38% report high success in this area. Immature AI tools were identified a significant barrier to adoption, cited by 77% of respondents, followed by financial concerns (47%) and regulatory uncertainty (40%). Ambient Notes is rapidly advancing in US healthcare systems and demonstrating early success. Other AI use cases show varying degrees of adoption and success, constrained by barriers such as immature AI tools, financial concerns, and regulatory uncertainty. Addressing these challenges through robust evaluations, shared strategies, and governance models will be essential to ensure effective integration and adoption of AI into healthcare practice.

Mamba-based deformable medical image registration with an annotated brain MR-CT dataset.

Wang Y, Guo T, Yuan W, Shu S, Meng C, Bai X

pubmed logopapersJul 1 2025
Deformable registration is essential in medical image analysis, especially for handling various multi- and mono-modal registration tasks in neuroimaging. Existing studies lack exploration of brain MR-CT registration, and face challenges in both accuracy and efficiency improvements of learning-based methods. To enlarge the practice of multi-modal registration in brain, we present SR-Reg, a new benchmark dataset comprising 180 volumetric paired MR-CT images and annotated anatomical regions. Building on this foundation, we introduce MambaMorph, a novel deformable registration network based on an efficient state space model Mamba for global feature learning, with a fine-grained feature extractor for low-level embedding. Experimental results demonstrate that MambaMorph surpasses advanced ConvNet-based and Transformer-based networks across several multi- and mono-modal tasks, showcasing impressive enhancements of efficacy and efficiency. Code and dataset are available at https://github.com/mileswyn/MambaMorph.

Leveraging multithreading on edge computing for smart healthcare based on intelligent multimodal classification approach.

Alghareb FS, Hasan BT

pubmed logopapersJul 1 2025
Medical digitization has been intensively developed in the last decade, leading to paving the path for computer-aided medical diagnosis research. Thus, anomaly detection based on machine and deep learning techniques has been extensively employed in healthcare applications, such as medical imaging classification and monitoring of patients' vital signs. To effectively leverage digitized medical records for identifying challenges in healthcare, this manuscript presents a smart Clinical Decision Support System (CDSS) dedicated for medical multimodal data automated diagnosis. A smart healthcare system necessitating medical data management and decision-making is proposed. To deliver timely rapid diagnosis, thread-level parallelism (TLP) is utilized for parallel distribution of classification tasks on three edge computing devices, each employing an AI module for on-device AI classifications. In comparison to existing machine and deep learning classification techniques, the proposed multithreaded architecture realizes a hybrid (ML and DL) processing module on each edge node. In this context, the presented edge computing-based parallel architecture captures a high level of parallelism, tailored for dealing with multiple categories of medical records. The cluster of the proposed architecture encompasses three edge computing Raspberry Pi devices and an edge server. Furthermore, lightweight neural networks, such as MobileNet, EfficientNet, and ResNet18, are trained and optimized based on genetic algorithms to provide classification of brain tumor, pneumonia, and colon cancer. Model deployment was conducted based on Python programming, where PyCharm is run on the edge server whereas Thonny is installed on edge nodes. In terms of accuracy, the proposed GA-based optimized ResNet18 for pneumonia diagnosis achieves 93.59% predictive accuracy and reduces the classifier computation complexity by 33.59%, whereas an outstanding accuracy of 99.78% and 100% were achieved with EfficientNet-v2 for brain tumor and colon cancer prediction, respectively, while both models preserving a reduction of 25% in the model's classifier. More importantly, an inference speedup of 28.61% and 29.08% was obtained by implementing parallel 2 DL and 3 DL threads configurations compared to the sequential implementation, respectively. Thus, the proposed multimodal-multithreaded architecture offers promising prospects for comprehensive and accurate anomaly detection of patients' medical imaging and vital signs. To summarize, our proposed architecture contributes to the advancement of healthcare services, aiming to improve patient medical diagnosis and therapy outcomes.

Generative Artificial Intelligence in Prostate Cancer Imaging.

Haque F, Simon BD, Özyörük KB, Harmon SA, Türkbey B

pubmed logopapersJul 1 2025
Prostate cancer (PCa) is the second most common cancer in men and has a significant health and social burden, necessitating advances in early detection, prognosis, and treatment strategies. Improvement in medical imaging has significantly impacted early PCa detection, characterization, and treatment planning. However, with an increasing number of patients with PCa and comparatively fewer PCa imaging experts, interpreting large numbers of imaging data is burdensome, time-consuming, and prone to variability among experts. With the revolutionary advances of artificial intelligence (AI) in medical imaging, image interpretation tasks are becoming easier and exhibit the potential to reduce the workload on physicians. Generative AI (GenAI) is a recently popular sub-domain of AI that creates new data instances, often to resemble patterns and characteristics of the real data. This new field of AI has shown significant potential for generating synthetic medical images with diverse and clinically relevant information. In this narrative review, we discuss the basic concepts of GenAI and cover the recent application of GenAI in the PCa imaging domain. This review will help the readers understand where the PCa research community stands in terms of various medical image applications like generating multi-modal synthetic images, image quality improvement, PCa detection, classification, and digital pathology image generation. We also address the current safety concerns, limitations, and challenges of GenAI for technical and clinical adaptation, as well as the limitations of current literature, potential solutions, and future directions with GenAI for the PCa community.

Iterative Misclassification Error Training (IMET): An Optimized Neural Network Training Technique for Image Classification

Ruhaan Singh, Sreelekha Guggilam

arxiv logopreprintJul 1 2025
Deep learning models have proven to be effective on medical datasets for accurate diagnostic predictions from images. However, medical datasets often contain noisy, mislabeled, or poorly generalizable images, particularly for edge cases and anomalous outcomes. Additionally, high quality datasets are often small in sample size that can result in overfitting, where models memorize noise rather than learn generalizable patterns. This in particular, could pose serious risks in medical diagnostics where the risk associated with mis-classification can impact human life. Several data-efficient training strategies have emerged to address these constraints. In particular, coreset selection identifies compact subsets of the most representative samples, enabling training that approximates full-dataset performance while reducing computational overhead. On the other hand, curriculum learning relies on gradually increasing training difficulty and accelerating convergence. However, developing a generalizable difficulty ranking mechanism that works across diverse domains, datasets, and models while reducing the computational tasks and remains challenging. In this paper, we introduce Iterative Misclassification Error Training (IMET), a novel framework inspired by curriculum learning and coreset selection. The IMET approach is aimed to identify misclassified samples in order to streamline the training process, while prioritizing the model's attention to edge case senarious and rare outcomes. The paper evaluates IMET's performance on benchmark medical image classification datasets against state-of-the-art ResNet architectures. The results demonstrating IMET's potential for enhancing model robustness and accuracy in medical image analysis are also presented in the paper.
Page 60 of 99990 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.