Sort by:
Page 6 of 12116 results

Patient radiation safety in the intensive care unit.

Quaia E

pubmed logopapersJul 1 2025
The aim of this commentary review was to summarize the main research evidences on radiation exposure and to underline the best clinical and radiological practices to limit radiation exposure in ICU patients. Radiological imaging is essential for management of patients in the ICU despite the risk of ionizing radiation exposure in monitoring critically ill patients, especially in those with prolonged hospitalization. In optimizing radiation exposure reduction for ICU patients, multiple parties and professionals must be considered, including hospital management, clinicians, radiographers, and radiologists. Modified diagnostic reference levels for ICU patients, based on UK guidance, may be proposed, especially considering the frequent repetition of x-ray diagnostic procedures in ICU patients. Best practices may reduce radiation exposure in ICU patients with particular emphasis on justification and radiation exposure optimization in conventional radiology, interventional radiology and fluoroscopy, CT, and nuclear medicine. CT contributes most predominately to radiation exposure in ICU patients. Low-dose (<1 mSv in effective dose) or even ultra-low-dose CT protocols, iterative reconstruction algorithms, and artificial intelligence-based innovative dose-reduction strategies could reduce radiation exposure and related oncogenic risks.

<sup>18</sup>F-FDG dose reduction using deep learning-based PET reconstruction.

Akita R, Takauchi K, Ishibashi M, Kondo S, Ono S, Yokomachi K, Ochi Y, Kiguchi M, Mitani H, Nakamura Y, Awai K

pubmed logopapersJul 1 2025
A deep learning-based image reconstruction (DLR) algorithm that can reduce the statistical noise has been developed for PET/CT imaging. It may reduce the administered dose of <sup>18</sup>F-FDG and minimize radiation exposure while maintaining diagnostic quality. This retrospective study evaluated whether the injected <sup>18</sup>F-FDG dose could be reduced by applying DLR to PET images. To this aim, we compared the quantitative image quality metrics and the false-positive rate between DLR with a reduced <sup>18</sup>F-FDG dose and Ordered Subsets Expectation Maximization (OSEM) with a standard dose. This study included 90 oncology patients who underwent <sup>18</sup>F-FDG PET/CT. They were divided into 3 groups (30 patients each): group A (<sup>18</sup>F-FDG dose per body weight [BW]: 2.00-2.99 MBq/kg; PET image reconstruction: DLR), group B (3.00-3.99 MBq/kg; DLR), and group C (standard dose group; 4.00-4.99 MBq/kg; OSEM). The evaluation was performed using the signal-to-noise ratio (SNR), target-to-background ratio (TBR), and false-positive rate. DLR yielded significantly higher SNRs in groups A and B than group C (p < 0.001). There was no significant difference in the TBR between groups A and C, and between groups B and C (p = 0.983 and 0.605, respectively). In group B, more than 80% of patients weighing less than 75 kg had at most one false positive result. In contrast, in group B patients weighing 75 kg or more, as well as in group A, less than 80% of patients had at most one false-positives. Our findings suggest that the injected <sup>18</sup>F-FDG dose can be reduced to 3.0 MBq/kg in patients weighing less than 75 kg by applying DLR. Compared to the recommended dose in the European Association of Nuclear Medicine (EANM) guidelines for 90 s per bed position (4.7 MBq/kg), this represents a dose reduction of 36%. Further optimization of DLR algorithms is required to maintain comparable diagnostic accuracy in patients weighing 75 kg or more.

Deep learning-based time-of-flight (ToF) enhancement of non-ToF PET scans for different radiotracers.

Mehranian A, Wollenweber SD, Bradley KM, Fielding PA, Huellner M, Iagaru A, Dedja M, Colwell T, Kotasidis F, Johnsen R, Jansen FP, McGowan DR

pubmed logopapersJul 1 2025
To evaluate a deep learning-based time-of-flight (DLToF) model trained to enhance the image quality of non-ToF PET images for different tracers, reconstructed using BSREM algorithm, towards ToF images. A 3D residual U-NET model was trained using 8 different tracers (FDG: 75% and non-FDG: 25%) from 11 sites from US, Europe and Asia. A total of 309 training and 33 validation datasets scanned on GE Discovery MI (DMI) ToF scanners were used for development of DLToF models of three strengths: low (L), medium (M) and high (H). The training and validation pairs consisted of target ToF and input non-ToF BSREM reconstructions using site-preferred regularisation parameters (beta values). The contrast and noise properties of each model were defined by adjusting the beta value of target ToF images. A total of 60 DMI datasets, consisting of a set of 4 tracers (<sup>18</sup>F-FDG, <sup>18</sup>F-PSMA, <sup>68</sup>Ga-PSMA, <sup>68</sup>Ga-DOTATATE) and 15 exams each, were collected for testing and quantitative analysis of the models based on standardized uptake value (SUV) in regions of interest (ROI) placed in lesions, lungs and liver. Each dataset includes 5 image series: ToF and non-ToF BSREM and three DLToF images. The image series (300 in total) were blind scored on a 5-point Likert score by 4 readers based on lesion detectability, diagnostic confidence, and image noise/quality. In lesion SUV<sub>max</sub> quantification with respect to ToF BSREM, DLToF-H achieved the best results among the three models by reducing the non-ToF BSREM errors from -39% to -6% for <sup>18</sup>F-FDG (38 lesions); from -42% to -7% for <sup>18</sup>F-PSMA (35 lesions); from -34% to -4% for <sup>68</sup>Ga-PSMA (23 lesions) and from -34% to -12% for <sup>68</sup>Ga-DOTATATE (32 lesions). Quantification results in liver and lung also showed ToF-like performance of DLToF models. Clinical reader resulted showed that DLToF-H results in an improved lesion detectability on average for all four radiotracers whereas DLToF-L achieved the highest scores for image quality (noise level). The results of DLToF-M however showed that this model results in the best trade-off between lesion detection and noise level and hence achieved the highest score for diagnostic confidence on average for all radiotracers. This study demonstrated that the DLToF models are suitable for both FDG and non-FDG tracers and could be utilized for digital BGO PET/CT scanners to provide an image quality and lesion detectability comparable and close to ToF.

Statistical Toolkit for Analysis of Radiotherapy DICOM Data.

Kinz M, Molodowitch C, Killoran J, Hesser JW, Zygmanski P

pubmed logopapersJun 30 2025
&#xD;Radiotherapy (RT) has become increasingly sophisticated, necessitating advanced tools for analyzing extensive treatment data in hospital databases. Such analyses can enhance future treatments, particularly through Knowledge-Based Planning, and aid in developing new treatment modalities like convergent kV RT.&#xD;Purpose: The objective is to develop automated software tools for large-scale retrospective analysis of over 10,000 MeV x-ray radiotherapy plans. This aims to identify trends and references in plans delivered at our institution across all treatment sites, focusing on: (A) Planning-Target-Volume, Clinical-Target-Volume, Gross-Tumor-Volume, and Organ-At-Risk (PTV/CTV/GTV/OAR) topology, morphology, and dosimetry, and (B) RT plan efficiency and complexity.&#xD;Methods:&#xD;The software tools are coded in Python. Topological metrics are evaluated using principal component analysis, including center of mass, volume, size, and depth. Morphology is quantified using Hounsfield Units, while dose distribution is characterized by conformity and homogeneity indexes. The total dose within the target versus the body is defined as the Dose Balance Index. &#xD;Results:&#xD;The primary outcome of this study is the toolkit and an analysis of our database. For example, the mean minimum and maximum PTV depths are about 2.5±2.3 cm and 9±3 cm, respectively.&#xD;Conclusions:&#xD;This study provides a statistical basis for RT plans and the necessary tools to generate them. It aids in selecting plans for knowledge-based models and deep-learning networks. The site-specific volume and depth results help identify the limitations and opportunities of current and future treatment modalities, in our case convergent kV RT. The compiled statistics and tools are versatile for training, quality assurance, comparing plans from different periods or institutions, and establishing guidelines. The toolkit is publicly available at https://github.com/m-kinz/STAR.

Assessment of quantitative staging PET/computed tomography parameters using machine learning for early detection of progression in diffuse large B-cell lymphoma.

Aksu A, Us A, Küçüker KA, Solmaz Ş, Turgut B

pubmed logopapersJun 30 2025
This study aimed to investigate the role of volumetric and dissemination parameters obtained from pretreatment 18-fluorodeoxyglucose PET/computed tomography (18F-FDG PET/CT) in predicting progression/relapse in patients with diffuse large B-cell lymphoma (DLBCL) with machine learning algorithms. Patients diagnosed with DLBCL histopathologically, treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone, and followed for at least 1 year were reviewed retrospectively. Quantitative parameters such as tumor volume [total metabolic tumor volume (tMTV)], tumor burden [total lesion glycolysis (tTLG)], and the longest distance between two tumor foci (Dmax) were obtained from PET images with a standard uptake value threshold of 4.0. The MTV obtained from the volume of interest with the highest volume was noted as metabolic bulk volume (MBV). By analyzing the patients' PET parameters and clinical information with machine learning algorithms, models that attempt to predict progression/recurrence over 1 year were obtained. Of the 90 patients included, 16 had progression within 1 year. Significant differences were found in tMTV, tTLG, MBV, and Dmax values between patients with and without progression. The area under curve (AUC) of the model obtained with clinical data was 0.701. While a model with an AUC of 0.871 was obtained with a random forest algorithm using PET parameters, the model obtained with the Naive Bayes algorithm including clinical data in PET parameters had an AUC of 0.838. Using quantitative parameters derived from staging PET with machine learning algorithms may enable us to detect early progression in patients with DLBCL and improve early risk stratification and guide treatment decisions in these patients.

$μ^2$Tokenizer: Differentiable Multi-Scale Multi-Modal Tokenizer for Radiology Report Generation

Siyou Li, Pengyao Qin, Huanan Wu, Dong Nie, Arun J. Thirunavukarasu, Juntao Yu, Le Zhang

arxiv logopreprintJun 30 2025
Automated radiology report generation (RRG) aims to produce detailed textual reports from clinical imaging, such as computed tomography (CT) scans, to improve the accuracy and efficiency of diagnosis and provision of management advice. RRG is complicated by two key challenges: (1) inherent complexity in extracting relevant information from imaging data under resource constraints, and (2) difficulty in objectively evaluating discrepancies between model-generated and expert-written reports. To address these challenges, we propose $\mu^2$LLM, a $\underline{\textbf{mu}}$ltiscale $\underline{\textbf{mu}}$ltimodal large language models for RRG tasks. The novel ${\mu}^2$Tokenizer, as an intermediate layer, integrates multi-modal features from the multiscale visual tokenizer and the text tokenizer, then enhances report generation quality through direct preference optimization (DPO), guided by GREEN-RedLlama. Experimental results on four large CT image-report medical datasets demonstrate that our method outperforms existing approaches, highlighting the potential of our fine-tuned $\mu^2$LLMs on limited data for RRG tasks. At the same time, for prompt engineering, we introduce a five-stage, LLM-driven pipeline that converts routine CT reports into paired visual-question-answer triples and citation-linked reasoning narratives, creating a scalable, high-quality supervisory corpus for explainable multimodal radiology LLM. All code, datasets, and models will be publicly available in our official repository. https://github.com/Siyou-Li/u2Tokenizer

Multimodal, Multi-Disease Medical Imaging Foundation Model (MerMED-FM)

Yang Zhou, Chrystie Wan Ning Quek, Jun Zhou, Yan Wang, Yang Bai, Yuhe Ke, Jie Yao, Laura Gutierrez, Zhen Ling Teo, Darren Shu Jeng Ting, Brian T. Soetikno, Christopher S. Nielsen, Tobias Elze, Zengxiang Li, Linh Le Dinh, Lionel Tim-Ee Cheng, Tran Nguyen Tuan Anh, Chee Leong Cheng, Tien Yin Wong, Nan Liu, Iain Beehuat Tan, Tony Kiat Hon Lim, Rick Siow Mong Goh, Yong Liu, Daniel Shu Wei Ting

arxiv logopreprintJun 30 2025
Current artificial intelligence models for medical imaging are predominantly single modality and single disease. Attempts to create multimodal and multi-disease models have resulted in inconsistent clinical accuracy. Furthermore, training these models typically requires large, labour-intensive, well-labelled datasets. We developed MerMED-FM, a state-of-the-art multimodal, multi-specialty foundation model trained using self-supervised learning and a memory module. MerMED-FM was trained on 3.3 million medical images from over ten specialties and seven modalities, including computed tomography (CT), chest X-rays (CXR), ultrasound (US), pathology patches, color fundus photography (CFP), optical coherence tomography (OCT) and dermatology images. MerMED-FM was evaluated across multiple diseases and compared against existing foundational models. Strong performance was achieved across all modalities, with AUROCs of 0.988 (OCT); 0.982 (pathology); 0.951 (US); 0.943 (CT); 0.931 (skin); 0.894 (CFP); 0.858 (CXR). MerMED-FM has the potential to be a highly adaptable, versatile, cross-specialty foundation model that enables robust medical imaging interpretation across diverse medical disciplines.

Radio DINO: A foundation model for advanced radiomics and AI-driven medical imaging analysis.

Zedda L, Loddo A, Di Ruberto C

pubmed logopapersJun 28 2025
Radiomics is transforming medical imaging by extracting complex features that enhance disease diagnosis, prognosis, and treatment evaluation. However, traditional approaches face significant challenges, such as the need for manual feature engineering, high dimensionality, and limited sample sizes. This paper presents Radio DINO, a novel family of deep learning foundation models that leverage self-supervised learning (SSL) techniques from DINO and DINOV2, pretrained on the RadImageNet dataset. The novelty of our approach lies in (1) developing Radio DINO to capture rich semantic embeddings, enabling robust feature extraction without manual intervention, (2) demonstrating superior performance across various clinical tasks on the MedMNISTv2 dataset, surpassing existing models, and (3) enhancing the interpretability of the model by providing visualizations that highlight its focus on clinically relevant image regions. Our results show that Radio DINO has the potential to democratize advanced radiomics tools, making them accessible to healthcare institutions with limited resources and ultimately improving diagnostic and prognostic outcomes in radiology.

Comparative analysis of iterative vs AI-based reconstruction algorithms in CT imaging for total body assessment: Objective and subjective clinical analysis.

Tucciariello RM, Botte M, Calice G, Cammarota A, Cammarota F, Capasso M, Nardo GD, Lancellotti MI, Palmese VP, Sarno A, Villonio A, Bianculli A

pubmed logopapersJun 28 2025
This study evaluates the performance of Iterative and AI-based Reconstruction algorithms in CT imaging for brain, chest, and upper abdomen assessments. Using a 320-slice CT scanner, phantom images were analysed through quantitative metrics such as Noise, Contrast-to-Noise-Ratio and Target Transfer Function. Additionally, five radiologists performed subjective evaluations on real patient images by scoring clinical parameters related to anatomical structures across the three body sites. The study aimed to relate results obtained with the typical approach related to parameters involved in medical physics using a Catphan physical phantom, with the evaluations assigned by the radiologists to the clinical parameters chosen in this study, and to determine whether the physical approach alone can ensure the implementation of new procedures and the optimization in clinical practice. AI-based algorithms demonstrated superior performance in chest and abdominal imaging, enhancing parenchymal and vascular detail with notable reductions in noise. However, their performance in brain imaging was less effective, as the aggressive noise reduction led to excessive smoothing, which affected diagnostic interpretability. Iterative reconstruction methods provided balanced results for brain imaging, preserving structural details and maintaining diagnostic clarity. The findings emphasize the need for region-specific optimization of reconstruction protocols. While AI-based methods can complement traditional IR techniques, they should not be assumed to inherently improve outcomes. A critical and cautious introduction of AI-based techniques is essential, ensuring radiologists adapt effectively without compromising diagnostic accuracy.

Exploring the Design Space of 3D MLLMs for CT Report Generation

Mohammed Baharoon, Jun Ma, Congyu Fang, Augustin Toma, Bo Wang

arxiv logopreprintJun 26 2025
Multimodal Large Language Models (MLLMs) have emerged as a promising way to automate Radiology Report Generation (RRG). In this work, we systematically investigate the design space of 3D MLLMs, including visual input representation, projectors, Large Language Models (LLMs), and fine-tuning techniques for 3D CT report generation. We also introduce two knowledge-based report augmentation methods that improve performance on the GREEN score by up to 10\%, achieving the 2nd place on the MICCAI 2024 AMOS-MM challenge. Our results on the 1,687 cases from the AMOS-MM dataset show that RRG is largely independent of the size of LLM under the same training protocol. We also show that larger volume size does not always improve performance if the original ViT was pre-trained on a smaller volume size. Lastly, we show that using a segmentation mask along with the CT volume improves performance. The code is publicly available at https://github.com/bowang-lab/AMOS-MM-Solution
Page 6 of 12116 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.