Sort by:
Page 59 of 2352345 results

TPA: Temporal Prompt Alignment for Fetal Congenital Heart Defect Classification

Darya Taratynova, Alya Almsouti, Beknur Kalmakhanbet, Numan Saeed, Mohammad Yaqub

arxiv logopreprintAug 21 2025
Congenital heart defect (CHD) detection in ultrasound videos is hindered by image noise and probe positioning variability. While automated methods can reduce operator dependence, current machine learning approaches often neglect temporal information, limit themselves to binary classification, and do not account for prediction calibration. We propose Temporal Prompt Alignment (TPA), a method leveraging foundation image-text model and prompt-aware contrastive learning to classify fetal CHD on cardiac ultrasound videos. TPA extracts features from each frame of video subclips using an image encoder, aggregates them with a trainable temporal extractor to capture heart motion, and aligns the video representation with class-specific text prompts via a margin-hinge contrastive loss. To enhance calibration for clinical reliability, we introduce a Conditional Variational Autoencoder Style Modulation (CVAESM) module, which learns a latent style vector to modulate embeddings and quantifies classification uncertainty. Evaluated on a private dataset for CHD detection and on a large public dataset, EchoNet-Dynamic, for systolic dysfunction, TPA achieves state-of-the-art macro F1 scores of 85.40% for CHD diagnosis, while also reducing expected calibration error by 5.38% and adaptive ECE by 6.8%. On EchoNet-Dynamic's three-class task, it boosts macro F1 by 4.73% (from 53.89% to 58.62%). Temporal Prompt Alignment (TPA) is a framework for fetal congenital heart defect (CHD) classification in ultrasound videos that integrates temporal modeling, prompt-aware contrastive learning, and uncertainty quantification.

Hierarchical Multi-Label Classification Model for CBCT-Based Extraction Socket Healing Assessment and Stratified Diagnostic Decision-Making to Assist Implant Treatment Planning.

Li Q, Han R, Huang J, Liu CB, Zhao S, Ge L, Zheng H, Huang Z

pubmed logopapersAug 21 2025
Dental implant treatment planning requires assessing extraction socket healing, yet current methods face challenges distinguishing soft tissue from woven bone on cone beam computed tomography (CBCT) imaging and lack standardized classification systems. In this study, we propose a hierarchical multilabel classification model for CBCT-based extraction socket healing assessment. We established a novel classification system dividing extraction socket healing status into two levels: Level 1 distinguishes physiological healing (Type I) from pathological healing (Type II); Level 2 is further subdivided into 5 subtypes. The HierTransFuse-Net architecture integrates ResNet50 with a two-dimensional transformer module for hierarchical multilabel classification. Additionally, a stratified diagnostic principle coupled with random forest algorithms supported personalized implant treatment planning. The HierTransFuse-Net model performed excellently in classifying extraction socket healing, achieving an mAccuracy of 0.9705, with mPrecision, mRecall, and mF1 scores of 0.9156, 0.9376, and 0.9253, respectively. The HierTransFuse-Net model demonstrated superior diagnostic reliability (κω = 0.9234) significantly exceeding that of clinical practitioners (mean κω = 0.7148, range: 0.6449-0.7843). The random forest model based on stratified diagnostic decision indicators achieved an accuracy of 81.48% and an mF1 score of 82.55% in predicting 12 clinical treatment pathways. This study successfully developed HierTransFuse-Net, which demonstrated excellent performance in distinguishing different extraction socket healing statuses and subtypes. Random forest algorithms based on stratified diagnostic indicators have shown potential for clinical pathway prediction. The hierarchical multilabel classification system simulates clinical diagnostic reasoning, enabling precise disease stratification and providing a scientific basis for personalized treatment decisions.

Vision Transformer Autoencoders for Unsupervised Representation Learning: Revealing Novel Genetic Associations through Learned Sparse Attention Patterns

Islam, S. R., He, W., Xie, Z., Zhi, D.

medrxiv logopreprintAug 21 2025
The discovery of genetic loci associated with brain architecture can provide deeper insights into neuroscience and potentially lead to improved personalized medicine outcomes. Previously, we designed the Unsupervised Deep learning-derived Imaging Phenotypes (UDIPs) approach to extract phenotypes from brain imaging using a convolutional (CNN) autoencoder, and conducted brain imaging GWAS on UK Biobank (UKBB). In this work, we design a vision transformer (ViT)-based autoencoder, leveraging its distinct inductive bias and its ability to capture unique patterns through its pairwise attention mechanism. The encoder generates contextual embeddings for input patches, from which we derive a 128-dimensional latent representation, interpreted as phenotypes, by applying average pooling. The GWAS on these 128 phenotypes discovered 10 loci previously unreported by CNN-based UDIP model, 3 of which had no previous associations with brain structure in the GWAS Catalog. Our interpretation results suggest that these novel associations stem from the ViTs capability to learn sparse attention patterns, enabling the capturing of non-local patterns such as left-right hemisphere symmetry within brain MRI data. Our results highlight the advantages of transformer-based architectures in feature extraction and representation learning for genetic discovery.

Integrating Imaging-Derived Clinical Endotypes with Plasma Proteomics and External Polygenic Risk Scores Enhances Coronary Microvascular Disease Risk Prediction

Venkatesh, R., Cherlin, T., Penn Medicine BioBank,, Ritchie, M. D., Guerraty, M., Verma, S. S.

medrxiv logopreprintAug 21 2025
Coronary microvascular disease (CMVD) is an underdiagnosed but significant contributor to the burden of ischemic heart disease, characterized by angina and myocardial infarction. The development of risk prediction models such as polygenic risk scores (PRS) for CMVD has been limited by a lack of large-scale genome-wide association studies (GWAS). However, there is significant overlap between CMVD and enrollment criteria for coronary artery disease (CAD) GWAS. In this study, we developed CMVD PRS models by selecting variants identified in a CMVD GWAS and applying weights from an external CAD GWAS, using CMVD-associated loci as proxies for the genetic risk. We integrated plasma proteomics, clinical measures from perfusion PET imaging, and PRS to evaluate their contributions to CMVD risk prediction in comprehensive machine and deep learning models. We then developed a novel unsupervised endotyping framework for CMVD from perfusion PET-derived myocardial blood flow data, revealing distinct patient subgroups beyond traditional case-control definitions. This imaging-based stratification substantially improved classification performance alongside plasma proteomics and PRS, achieving AUROCs between 0.65 and 0.73 per class, significantly outperforming binary classifiers and existing clinical models, highlighting the potential of this stratification approach to enable more precise and personalized diagnosis by capturing the underlying heterogeneity of CMVD. This work represents the first application of imaging-based endotyping and the integration of genetic and proteomic data for CMVD risk prediction, establishing a framework for multimodal modeling in complex diseases.

Multimodal Integration in Health Care: Development With Applications in Disease Management.

Hao Y, Cheng C, Li J, Li H, Di X, Zeng X, Jin S, Han X, Liu C, Wang Q, Luo B, Zeng X, Li K

pubmed logopapersAug 21 2025
Multimodal data integration has emerged as a transformative approach in the health care sector, systematically combining complementary biological and clinical data sources such as genomics, medical imaging, electronic health records, and wearable device outputs. This approach provides a multidimensional perspective of patient health that enhances the diagnosis, treatment, and management of various medical conditions. This viewpoint presents an overview of the current state of multimodal integration in health care, spanning clinical applications, current challenges, and future directions. We focus primarily on its applications across different disease domains, particularly in oncology and ophthalmology. Other diseases are briefly discussed due to the few available literature. In oncology, the integration of multimodal data enables more precise tumor characterization and personalized treatment plans. Multimodal fusion demonstrates accurate prediction of anti-human epidermal growth factor receptor 2 therapy response (area under the curve=0.91). In ophthalmology, multimodal integration through the combination of genetic and imaging data facilitates the early diagnosis of retinal diseases. However, substantial challenges remain regarding data standardization, model deployment, and model interpretability. We also highlight the future directions of multimodal integration, including its expanded disease applications, such as neurological and otolaryngological diseases, and the trend toward large-scale multimodal models, which enhance accuracy. Overall, the innovative potential of multimodal integration is expected to further revolutionize the health care industry, providing more comprehensive and personalized solutions for disease management.

CT-based machine learning model integrating intra- and peri-tumoral radiomics features for predicting occult lymph node metastasis in peripheral lung cancer.

Lu X, Liu F, E J, Cai X, Yang J, Wang X, Zhang Y, Sun B, Liu Y

pubmed logopapersAug 21 2025
Accurate preoperative assessment of occult lymph node metastasis (OLNM) plays a crucial role in informing therapeutic decision-making for lung cancer patients. Computed tomography (CT) is the most widely used imaging modality for preoperative work-up. The aim of this study was to develop and validate a CT-based machine learning model integrating intra-and peri-tumoral features to predict OLNM in lung cancer patients. Eligible patients with peripheral lung cancer confirmed by radical surgical excision with systematic lymphadenectomy were retrospectively recruited from January 2019 to December 2021. 1688 radiomics features were obtained from each manually segmented VOI which was composed of gross tumor volume (GTV) covering the boundary of entire tumor and three peritumoral volumes (PTV3, PTV6 and PTV9) that capture the region outside the tumor. A clinical-radiomics model incorporating radiomics signature, independent clinical factors and CT semantic features was established via multivariable logistic regression analysis and presented as a nomogram. Model performance was evaluated by discrimination, calibration, and clinical utility. Overall, 591 patients were recruited in the training cohort and 253 in the validation cohort. The radiomics signature of PTV9 showed superior diagnostic performance compared to PTV3 and PTV6 models. Integrating GPTV radiomics signature (incorporating Rad-score of GTV and PTV9) with clinical risk factor of serum CEA levels and CT imaging features of lobulation sign and tumor-pleura relationship demonstrated favorable accuracy in predicting OLNM in the training cohort (AUC, 0.819; 95% CI: 0.780-0.857) and validation cohort (AUC, 0.801; 95% CI: 0.741-0.860). The predictive performance of the clinical-radiomics model demonstrated statistically significant superiority over that of the clinical model in both cohorts (all p < 0.05). The clinical-radiomics model was able to serve as a noninvasive preoperative prediction tool for personalized risk assessment of OLNM in peripheral lung cancer patients.

Initial Recurrence Risk Stratification of Papillary Thyroid Cancer Based on Intratumoral and Peritumoral Dual Energy CT Radiomics.

Zhou Y, Xu Y, Si Y, Wu F, Xu X

pubmed logopapersAug 21 2025
This study aims to evaluate the potential of Dual-Energy Computed Tomography (DECT)-based radiomics in preoperative risk stratification for the prediction of initial recurrence in Papillary Thyroid Carcinoma (PTC). The retrospective analysis included 236 PTC cases (165 in the training cohort, 71 in the validation cohort) collected between July 2020 and June 2021. Tumor segmentation was carried out in both intratumoral and peritumoral areas (1 mm inner and outer to the tumor boundary). Three regionspecific rad-scores were developed (rad-score [VOI<sup>whole</sup>], rad-score [VOI<sup>outer layer</sup>], and rad-score [VOI<sup>inner layer</sup>]), respectively. Three radiomics models incorporating these rad-scores and additional risk factors were compared to a clinical model alone. The optimal radiomics model was presented as a nomogram. Rad-scores from peritumoral regions (VOI<sup>outer layer</sup> and VOI<sup>inner layer</sup>) outperformed the intratumoral rad-score (VOI<sup>whole</sup>). All radiomics models surpassed the clinical model, with peritumoral-based models (radiomics models 2 and 3) outperforming the intratumoral-based model (radiomics model 1). The top-performing nomogram, which included tumor size, tumor site, and rad-score (VOI<sup>inner layer</sup>), achieved an Area Under the Curve (AUC) of 0.877 in the training cohort and 0.876 in the validation cohort. The nomogram demonstrated good calibration, clinical utility, and stability. DECT-based intratumoral and peritumoral radiomics advance PTC initial recurrence risk prediction, providing clinical radiology with precise predictive tools. Further work is needed to refine the model and enhance its clinical application. Radiomics analysis of DECT, particularly in peritumoral regions, offers valuable predictive information for assessing the risk of initial recurrence in PTC.

COVID19 Prediction Based On CT Scans Of Lungs Using DenseNet Architecture

Deborup Sanyal

arxiv logopreprintAug 21 2025
COVID19 took the world by storm since December 2019. A highly infectious communicable disease, COVID19 is caused by the SARSCoV2 virus. By March 2020, the World Health Organization (WHO) declared COVID19 as a global pandemic. A pandemic in the 21st century after almost 100 years was something the world was not prepared for, which resulted in the deaths of around 1.6 million people worldwide. The most common symptoms of COVID19 were associated with the respiratory system and resembled a cold, flu, or pneumonia. After extensive research, doctors and scientists concluded that the main reason for lives being lost due to COVID19 was failure of the respiratory system. Patients were dying gasping for breath. Top healthcare systems of the world were failing badly as there was an acute shortage of hospital beds, oxygen cylinders, and ventilators. Many were dying without receiving any treatment at all. The aim of this project is to help doctors decide the severity of COVID19 by reading the patient's Computed Tomography (CT) scans of the lungs. Computer models are less prone to human error, and Machine Learning or Neural Network models tend to give better accuracy as training improves over time. We have decided to use a Convolutional Neural Network model. Given that a patient tests positive, our model will analyze the severity of COVID19 infection within one month of the positive test result. The severity of the infection may be promising or unfavorable (if it leads to intubation or death), based entirely on the CT scans in the dataset.

Cohort-Aware Agents for Individualized Lung Cancer Risk Prediction Using a Retrieval-Augmented Model Selection Framework

Chongyu Qu, Allen J. Luna, Thomas Z. Li, Junchao Zhu, Junlin Guo, Juming Xiong, Kim L. Sandler, Bennett A. Landman, Yuankai Huo

arxiv logopreprintAug 20 2025
Accurate lung cancer risk prediction remains challenging due to substantial variability across patient populations and clinical settings -- no single model performs best for all cohorts. To address this, we propose a personalized lung cancer risk prediction agent that dynamically selects the most appropriate model for each patient by combining cohort-specific knowledge with modern retrieval and reasoning techniques. Given a patient's CT scan and structured metadata -- including demographic, clinical, and nodule-level features -- the agent first performs cohort retrieval using FAISS-based similarity search across nine diverse real-world cohorts to identify the most relevant patient population from a multi-institutional database. Second, a Large Language Model (LLM) is prompted with the retrieved cohort and its associated performance metrics to recommend the optimal prediction algorithm from a pool of eight representative models, including classical linear risk models (e.g., Mayo, Brock), temporally-aware models (e.g., TDVIT, DLSTM), and multi-modal computer vision-based approaches (e.g., Liao, Sybil, DLS, DLI). This two-stage agent pipeline -- retrieval via FAISS and reasoning via LLM -- enables dynamic, cohort-aware risk prediction personalized to each patient's profile. Building on this architecture, the agent supports flexible and cohort-driven model selection across diverse clinical populations, offering a practical path toward individualized risk assessment in real-world lung cancer screening.

Functional brain network identification in opioid use disorder using machine learning analysis of resting-state fMRI BOLD signals.

Temtam A, Witherow MA, Ma L, Sadique MS, Moeller FG, Iftekharuddin KM

pubmed logopapersAug 20 2025
Understanding the neurobiology of opioid use disorder (OUD) using resting-state functional magnetic resonance imaging (rs-fMRI) may help inform treatment strategies to improve patient outcomes. Recent literature suggests time-frequency characteristics of rs-fMRI blood oxygenation level-dependent (BOLD) signals may offer complementary information to traditional analysis techniques. However, existing studies of OUD analyze BOLD signals using measures computed across all time points. This study, for the first time in the literature, employs data-driven machine learning (ML) for time-frequency analysis of local neural activity within key functional networks to differentiate OUD subjects from healthy controls (HC). We obtain time-frequency features based on rs-fMRI BOLD signals from the default mode network (DMN), salience network (SN), and executive control network (ECN) for 31 OUD and 45 HC subjects. Then, we perform 5-fold cross-validation classification (OUD vs. HC) experiments to study the discriminative power of functional network features while taking into consideration significant demographic features. ML-based time-frequency analysis of DMN, SN, and ECN significantly (p < 0.05) outperforms chance baselines for discriminative power with mean F1 scores of 0.6675, 0.7090, and 0.6810, respectively, and mean AUCs of 0.7302, 0.7603, and 0.7103, respectively. Follow-up Boruta ML analysis of selected time-frequency (wavelet) features reveals significant (p < 0.05) detail coefficients for all three functional networks, underscoring the need for ML and time-frequency analysis of rs-fMRI BOLD signals in the study of OUD.
Page 59 of 2352345 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.