Sort by:
Page 59 of 65646 results

Preoperative prediction of malignant transformation in sinonasal inverted papilloma: a novel MRI-based deep learning approach.

Ding C, Wen B, Han Q, Hu N, Kang Y, Wang Y, Wang C, Zhang L, Xian J

pubmed logopapersMay 12 2025
To develop a novel MRI-based deep learning (DL) diagnostic model, utilizing multicenter large-sample data, for the preoperative differentiation of sinonasal inverted papilloma (SIP) from SIP-transformed squamous cell carcinoma (SIP-SCC). This study included 568 patients from four centers with confirmed SIP (n = 421) and SIP-SCC (n = 147). Deep learning models were built using T1WI, T2WI, and CE-T1WI. A combined model was constructed by integrating these features through an attention mechanism. The diagnostic performance of radiologists, both with and without the model's assistance, was compared. Model performance was evaluated through receiver operating characteristic (ROC) analysis, calibration curves, and decision curve analysis (DCA). The combined model demonstrated superior performance in differentiating SIP from SIP-SCC, achieving AUCs of 0.954, 0.897, and 0.859 in the training, internal validation, and external validation cohorts, respectively. It showed optimal accuracy, stability, and clinical benefit, as confirmed by Brier scores and calibration curves. The diagnostic performance of radiologists, especially for less experienced ones, was significantly improved with model assistance. The MRI-based deep learning model enhances the capability to predict malignant transformation of sinonasal inverted papilloma before surgery. By facilitating earlier diagnosis and promoting timely pathological examination or surgical intervention, this approach holds the potential to enhance patient prognosis. Questions Sinonasal inverted papilloma (SIP) is prone to malignant transformation locally, leading to poor prognosis; current diagnostic methods are invasive and inaccurate, necessitating effective preoperative differentiation. Findings The MRI-based deep learning model accurately diagnoses malignant transformations of SIP, enabling junior radiologists to achieve greater clinical benefits with the assistance of the model. Clinical relevance A novel MRI-based deep learning model enhances the capability of preoperative diagnosis of malignant transformation in sinonasal inverted papilloma, providing a non-invasive tool for personalized treatment planning.

Multi-Plane Vision Transformer for Hemorrhage Classification Using Axial and Sagittal MRI Data

Badhan Kumar Das, Gengyan Zhao, Boris Mailhe, Thomas J. Re, Dorin Comaniciu, Eli Gibson, Andreas Maier

arxiv logopreprintMay 12 2025
Identifying brain hemorrhages from magnetic resonance imaging (MRI) is a critical task for healthcare professionals. The diverse nature of MRI acquisitions with varying contrasts and orientation introduce complexity in identifying hemorrhage using neural networks. For acquisitions with varying orientations, traditional methods often involve resampling images to a fixed plane, which can lead to information loss. To address this, we propose a 3D multi-plane vision transformer (MP-ViT) for hemorrhage classification with varying orientation data. It employs two separate transformer encoders for axial and sagittal contrasts, using cross-attention to integrate information across orientations. MP-ViT also includes a modality indication vector to provide missing contrast information to the model. The effectiveness of the proposed model is demonstrated with extensive experiments on real world clinical dataset consists of 10,084 training, 1,289 validation and 1,496 test subjects. MP-ViT achieved substantial improvement in area under the curve (AUC), outperforming the vision transformer (ViT) by 5.5% and CNN-based architectures by 1.8%. These results highlight the potential of MP-ViT in improving performance for hemorrhage detection when different orientation contrasts are needed.

Altered intrinsic ignition dynamics linked to Amyloid-β and tau pathology in Alzheimer's disease

Patow, G. A., Escrichs, A., Martinez-Molina, N., Ritter, P., Deco, G.

biorxiv logopreprintMay 11 2025
Alzheimer's disease (AD) progressively alters brain structure and function, yet the associated changes in large-scale brain network dynamics remain poorly understood. We applied the intrinsic ignition framework to resting-state functional MRI (rs-fMRI) data from AD patients, individuals with mild cognitive impairment (MCI), and cognitively healthy controls (HC) to elucidate how AD shapes intrinsic brain activity. We assessed node-metastability at the whole-brain level and in 7 canonical resting-state networks (RSNs). Our results revealed a progressive decline in dynamical complexity across the disease continuum. HC exhibited the highest node-metastability, whereas it was substantially reduced in MCI and AD patients. The cortical hierarchy of information processing was also disrupted, indicating that rich-club hubs may be selectively affected in AD progression. Furthermore, we used linear mixed-effects models to evaluate the influence of Amyloid-{beta} (A{beta}) and tau pathology on brain dynamics at both regional and whole-brain levels. We found significant associations between both protein burdens and alterations in node metastability. Lastly, a machine learning classifier trained on brain dynamics, A{beta}, and tau burden features achieved high accuracy in discriminating between disease stages. Together, our findings highlight the progressive disruption of intrinsic ignition across whole-brain and RSNs in AD and support the use of node-metastability in conjunction with proteinopathy as a novel framework for tracking disease progression.

A Clinical Neuroimaging Platform for Rapid, Automated Lesion Detection and Personalized Post-Stroke Outcome Prediction

Brzus, M., Griffis, J. C., Riley, C. J., Bruss, J., Shea, C., Johnson, H. J., Boes, A. D.

medrxiv logopreprintMay 11 2025
Predicting long-term functional outcomes for individuals with stroke is a significant challenge. Solving this challenge will open new opportunities for improving stroke management by informing acute interventions and guiding personalized rehabilitation strategies. The location of the stroke is a key predictor of outcomes, yet no clinically deployed tools incorporate lesion location information for outcome prognostication. This study responds to this critical need by introducing a fully automated, three-stage neuroimaging processing and machine learning pipeline that predicts personalized outcomes from clinical imaging in adult ischemic stroke patients. In the first stage, our system automatically processes raw DICOM inputs, registers the brain to a standard template, and uses deep learning models to segment the stroke lesion. In the second stage, lesion location and automatically derived network features are input into statistical models trained to predict long-term impairments from a large independent cohort of lesion patients. In the third stage, a structured PDF report is generated using a large language model that describes the strokes location, the arterial distribution, and personalized prognostic information. We demonstrate the viability of this approach in a proof-of-concept application predicting select cognitive outcomes in a stroke cohort. Brain-behavior models were pre-trained to predict chronic impairment on 28 different cognitive outcomes in a large cohort of patients with focal brain lesions (N=604). The automated pipeline used these models to predict outcomes from clinically acquired MRIs in an independent ischemic stroke cohort (N=153). Starting from raw clinical DICOM images, we show that our pipeline can generate outcome predictions for individual patients in less than 3 minutes with 96% concordance relative to methods requiring manual processing. We also show that prediction accuracy is enhanced using models that incorporate lesion location, lesion-associated network information, and demographics. Our results provide a strong proof-of-concept and lay the groundwork for developing imaging-based clinical tools for stroke outcome prognostication.

Study on predicting breast cancer Ki-67 expression using a combination of radiomics and deep learning based on multiparametric MRI.

Wang W, Wang Z, Wang L, Li J, Pang Z, Qu Y, Cui S

pubmed logopapersMay 11 2025
To develop a multiparametric breast MRI radiomics and deep learning-based multimodal model for predicting preoperative Ki-67 expression status in breast cancer, with the potential to advance individualized treatment and precision medicine for breast cancer patients. We included 176 invasive breast cancer patients who underwent breast MRI and had Ki-67 results. The dataset was randomly split into training (70 %) and test (30 %) sets. Features from T1-weighted imaging (T1WI), diffusion-weighted imaging (DWI), T2-weighted imaging (T2WI), and dynamic contrast-enhanced MRI (DCE-MRI) were fused. Separate models were created for each sequence: T1, DWI, T2, and DCE. A multiparametric MRI (mp-MRI) model was then developed by combining features from all sequences. Models were trained using five-fold cross-validation and evaluated on the test set with receiver operating characteristic (ROC) curve area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F1 score. Delong's test compared the mp-MRI model with the other models, with P < 0.05 indicating statistical significance. All five models demonstrated good performance, with AUCs of 0.83 for the T1 model, 0.85 for the DWI model, 0.90 for the T2 model, 0.92 for the DCE model, and 0.96 for the mp-MRI model. Delong's test indicated statistically significant differences between the mp-MRI model and the other four models, with P values < 0.05. The multiparametric breast MRI radiomics and deep learning-based multimodal model performs well in predicting preoperative Ki-67 expression status in breast cancer.

Error correcting 2D-3D cascaded network for myocardial infarct scar segmentation on late gadolinium enhancement cardiac magnetic resonance images.

Schwab M, Pamminger M, Kremser C, Obmann D, Haltmeier M, Mayr A

pubmed logopapersMay 10 2025
Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) imaging is considered the in vivo reference standard for assessing infarct size (IS) and microvascular obstruction (MVO) in ST-elevation myocardial infarction (STEMI) patients. However, the exact quantification of those markers of myocardial infarct severity remains challenging and very time-consuming. As LGE distribution patterns can be quite complex and hard to delineate from the blood pool or epicardial fat, automatic segmentation of LGE CMR images is challenging. In this work, we propose a cascaded framework of two-dimensional and three-dimensional convolutional neural networks (CNNs) which enables to calculate the extent of myocardial infarction in a fully automated way. By artificially generating segmentation errors which are characteristic for 2D CNNs during training of the cascaded framework we are enforcing the detection and correction of 2D segmentation errors and hence improve the segmentation accuracy of the entire method. The proposed method was trained and evaluated on two publicly available datasets. We perform comparative experiments where we show that our framework outperforms state-of-the-art reference methods in segmentation of myocardial infarction. Furthermore, in extensive ablation studies we show the advantages that come with the proposed error correcting cascaded method. The code of this project is publicly available at https://github.com/matthi99/EcorC.git.

Circulating Antioxidant Nutrients and Brain Age in Midlife Adults.

Lower MJ, DeCataldo MK, Kraynak TE, Gianaros PJ

pubmed logopapersMay 9 2025
Due to population aging, the increasing prevalence of Alzheimer's Disease (AD) and related dementias are major public health concerns. Dietary consumption of antioxidant nutrients, in particular the carotenoid β-carotene, has been associated with lower age-related neurocognitive decline. What is unclear, however, is the extent to which antioxidant nutrients may exert neuroprotective effects via their influence on established indicators of age-related changes in brain tissue. This study thus tested associations of circulating β-carotene and other nutrients with a structural neuroimaging indicator of brain age derived from cross-validated machine learning models trained to predict chronological age from brain tissue morphology in independent cohorts. Midlife adults (N=132, aged 30.4 to 50.8 years, 59 female at birth) underwent a structural magnetic resonance imaging (MRI) protocol and fasting phlebotomy to assess plasma concentrations of β-carotene, retinol, γ-tocopherol, ⍺-tocopherol, and β-cryptoxanthin. In regression analyses adjusting for chronological age, sex at birth, smoking status, MRI image quality, season of testing, annual income, and education, greater circulating levels of β-carotene were associated with a lower (i.e., younger) predicted brain age (β=-0.23, 95% CI=-0.40 to -0.07, P=0.006). Other nutrients were not statistically associated with brain age, and results persisted after additional covariate control for body mass index, cortical volume, and cortical thickness. These cross-sectional findings are consistent with the possibility that dietary intake of β-carotene may be associated with slower biological aging at the level of the brain, as reflected by a neuroimaging indicator of brain age.

Robust & Precise Knowledge Distillation-based Novel Context-Aware Predictor for Disease Detection in Brain and Gastrointestinal

Saif Ur Rehman Khan, Muhammad Nabeel Asim, Sebastian Vollmer, Andreas Dengel

arxiv logopreprintMay 9 2025
Medical disease prediction, particularly through imaging, remains a challenging task due to the complexity and variability of medical data, including noise, ambiguity, and differing image quality. Recent deep learning models, including Knowledge Distillation (KD) methods, have shown promising results in brain tumor image identification but still face limitations in handling uncertainty and generalizing across diverse medical conditions. Traditional KD methods often rely on a context-unaware temperature parameter to soften teacher model predictions, which does not adapt effectively to varying uncertainty levels present in medical images. To address this issue, we propose a novel framework that integrates Ant Colony Optimization (ACO) for optimal teacher-student model selection and a novel context-aware predictor approach for temperature scaling. The proposed context-aware framework adjusts the temperature based on factors such as image quality, disease complexity, and teacher model confidence, allowing for more robust knowledge transfer. Additionally, ACO efficiently selects the most appropriate teacher-student model pair from a set of pre-trained models, outperforming current optimization methods by exploring a broader solution space and better handling complex, non-linear relationships within the data. The proposed framework is evaluated using three publicly available benchmark datasets, each corresponding to a distinct medical imaging task. The results demonstrate that the proposed framework significantly outperforms current state-of-the-art methods, achieving top accuracy rates: 98.01% on the MRI brain tumor (Kaggle) dataset, 92.81% on the Figshare MRI dataset, and 96.20% on the GastroNet dataset. This enhanced performance is further evidenced by the improved results, surpassing existing benchmarks of 97.24% (Kaggle), 91.43% (Figshare), and 95.00% (GastroNet).

Hybrid Learning: A Novel Combination of Self-Supervised and Supervised Learning for MRI Reconstruction without High-Quality Training Reference

Haoyang Pei, Ding Xia, Xiang Xu, William Moore, Yao Wang, Hersh Chandarana, Li Feng

arxiv logopreprintMay 9 2025
Purpose: Deep learning has demonstrated strong potential for MRI reconstruction, but conventional supervised learning methods require high-quality reference images, which are often unavailable in practice. Self-supervised learning offers an alternative, yet its performance degrades at high acceleration rates. To overcome these limitations, we propose hybrid learning, a novel two-stage training framework that combines self-supervised and supervised learning for robust image reconstruction. Methods: Hybrid learning is implemented in two sequential stages. In the first stage, self-supervised learning is employed to generate improved images from noisy or undersampled reference data. These enhanced images then serve as pseudo-ground truths for the second stage, which uses supervised learning to refine reconstruction performance and support higher acceleration rates. We evaluated hybrid learning in two representative applications: (1) accelerated 0.55T spiral-UTE lung MRI using noisy reference data, and (2) 3D T1 mapping of the brain without access to fully sampled ground truth. Results: For spiral-UTE lung MRI, hybrid learning consistently improved image quality over both self-supervised and conventional supervised methods across different acceleration rates, as measured by SSIM and NMSE. For 3D T1 mapping, hybrid learning achieved superior T1 quantification accuracy across a wide dynamic range, outperforming self-supervised learning in all tested conditions. Conclusions: Hybrid learning provides a practical and effective solution for training deep MRI reconstruction networks when only low-quality or incomplete reference data are available. It enables improved image quality and accurate quantitative mapping across different applications and field strengths, representing a promising technique toward broader clinical deployment of deep learning-based MRI.

Magnetic Resonance Imaging in the Clinical Evaluation of Lung Disorders: Current Status and Future Prospects.

Wu L, Gao C, Wu T, Kong N, Zhang Z, Li J, Fan L, Xu M

pubmed logopapersMay 9 2025
The low proton density and high signal decay rate of pulmonary tissue have previously hampered the application of magnetic resonance imaging (MRI) in the clinical evaluation of lung disorders. With the continuing technical advances in scanners, coils, pulse sequences, and image postprocessing, pulmonary MRI can provide structural and functional information with faster imaging speed and improved image quality, which has shown potential to be an alternative and complementary diagnostic method to chest computed tomography (CT). Compared with CT, MRI does not involve ionizing radiation, making it particularly suitable for pediatric patients, pregnant women, and individuals requiring longitudinal monitoring. This narrative review focuses on recent advances in techniques and clinical applications for pulmonary MRI in lung diseases, including lung parenchymal and pulmonary vascular diseases. Future developments, including artificial intelligence-driven technological optimization and assisted diagnosis, hardware advancements, and clinical biomarkers validation, hold the potential to further enhance the clinical utility of pulmonary MRI. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Page 59 of 65646 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.