Sort by:
Page 59 of 1241236 results

Cycle-conditional diffusion model for noise correction of diffusion-weighted images using unpaired data.

Zhu P, Liu C, Fu Y, Chen N, Qiu A

pubmed logopapersJul 1 2025
Diffusion-weighted imaging (DWI) is a key modality for studying brain microstructure, but its signals are highly susceptible to noise due to the thermal motion of water molecules and interactions with tissue microarchitecture, leading to significant signal attenuation and a low signal-to-noise ratio (SNR). In this paper, we propose a novel approach, a Cycle-Conditional Diffusion Model (Cycle-CDM) using unpaired data learning, aimed at improving DWI quality and reliability through noise correction. Cycle-CDM leverages a cycle-consistent translation architecture to bridge the domain gap between noise-contaminated and noise-free DWIs, enabling the restoration of high-quality images without requiring paired datasets. By utilizing two conditional diffusion models, Cycle-CDM establishes data interrelationships between the two types of DWIs, while incorporating synthesized anatomical priors from the cycle translation process to guide noise removal. In addition, we introduce specific constraints to preserve anatomical fidelity, allowing Cycle-CDM to effectively learn the underlying noise distribution and achieve accurate denoising. Our experiments conducted on simulated datasets, as well as children and adolescents' datasets with strong clinical relevance. Our results demonstrate that Cycle-CDM outperforms comparative methods, such as U-Net, CycleGAN, Pix2Pix, MUNIT and MPPCA, in terms of noise correction performance. We demonstrated that Cycle-CDM can be generalized to DWIs with head motion when they were acquired using different MRI scannsers. Importantly, the denoised DWI data produced by Cycle-CDM exhibit accurate preservation of underlying tissue microstructure, thus substantially improving their medical applicability.

HALSR-Net: Improving CNN Segmentation of Cardiac Left Ventricle MRI with Hybrid Attention and Latent Space Reconstruction.

Fakhfakh M, Sarry L, Clarysse P

pubmed logopapersJul 1 2025
Accurate cardiac MRI segmentation is vital for detailed cardiac analysis, yet the manual process is labor-intensive and prone to variability. Despite advancements in MRI technology, there remains a significant need for automated methods that can reliably and efficiently segment cardiac structures. This paper introduces HALSR-Net, a novel multi-level segmentation architecture designed to improve the accuracy and reproducibility of cardiac segmentation from Cine-MRI acquisitions, focusing on the left ventricle (LV). The methodology consists of two main phases: first, the extraction of the region of interest (ROI) using a regression model that accurately predicts the location of a bounding box around the LV; second, the semantic segmentation step based on HALSR-Net architecture. This architecture incorporates a Hybrid Attention Pooling Module (HAPM) that merges attention and pooling mechanisms to enhance feature extraction and capture contextual information. Additionally, a reconstruction module leverages latent space features to further improve segmentation accuracy. Experiments conducted on an in-house clinical dataset and two public datasets (ACDC and LVQuan19) demonstrate that HALSR-Net outperforms state-of-the-art architectures, achieving up to 98% accuracy and F1-score for the segmentation of the LV cavity and myocardium. The proposed approach effectively addresses the limitations of existing methods, offering a more accurate and robust solution for cardiac MRI segmentation, thereby likely to improve cardiac function analysis and patient care.

SHFormer: Dynamic spectral filtering convolutional neural network and high-pass kernel generation transformer for adaptive MRI reconstruction.

Ramanarayanan S, G S R, Fahim MA, Ram K, Venkatesan R, Sivaprakasam M

pubmed logopapersJul 1 2025
Attention Mechanism (AM) selectively focuses on essential information for imaging tasks and captures relationships between regions from distant pixel neighborhoods to compute feature representations. Accelerated magnetic resonance image (MRI) reconstruction can benefit from AM, as the imaging process involves acquiring Fourier domain measurements that influence the image representation in a non-local manner. However, AM-based models are more adept at capturing low-frequency information and have limited capacity in constructing high-frequency representations, restricting the models to smooth reconstruction. Secondly, AM-based models need mode-specific retraining for multimodal MRI data as their knowledge is restricted to local contextual variations within modes that might be inadequate to capture the diverse transferable features across heterogeneous data domains. To address these challenges, we propose a neuromodulation-based discriminative multi-spectral AM for scalable MRI reconstruction, that can (i) propagate the context-aware high-frequency details for high-quality image reconstruction, and (ii) capture features reusable to deviated unseen domains in multimodal MRI, to offer high practical value for the healthcare industry and researchers. The proposed network consists of a spectral filtering convolutional neural network to capture mode-specific transferable features to generalize to deviated MRI data domains and a dynamic high-pass kernel generation transformer that focuses on high-frequency details for improved reconstruction. We have evaluated our model on various aspects, such as comparative studies in supervised and self-supervised learning, diffusion model-based training, closed-set and open-set generalization under heterogeneous MRI data, and interpretation-based analysis. Our results show that the proposed method offers scalable and high-quality reconstruction with best improvement margins of ∼1 dB in PSNR and ∼0.01 in SSIM under unseen scenarios. Our code is available at https://github.com/sriprabhar/SHFormer.

Efficient Brain Tumor Detection and Segmentation Using DN-MRCNN With Enhanced Imaging Technique.

N JS, Ayothi S

pubmed logopapersJul 1 2025
This article proposes a method called DenseNet 121-Mask R-CNN (DN-MRCNN) for the detection and segmentation of brain tumors. The main objective is to reduce the execution time and accurately locate and segment the tumor, including its subareas. The input images undergo preprocessing techniques such as median filtering and Gaussian filtering to reduce noise and artifacts, as well as improve image quality. Histogram equalization is used to enhance the tumor regions, and image augmentation is employed to improve the model's diversity and robustness. To capture important patterns, a gated axial self-attention layer is added to the DenseNet 121 model, allowing for increased attention during the analysis of the input images. For accurate segmentation, boundary boxes are generated using a Regional Proposal Network with anchor customization. Post-processing techniques, specifically nonmaximum suppression, are performed to neglect redundant bounding boxes caused by overlapping regions. The Mask R-CNN model is used to accurately detect and segment the entire tumor (WT), tumor core (TC), and enhancing tumor (ET). The proposed model is evaluated using the BraTS 2019 dataset, the UCSF-PDGM dataset, and the UPENN-GBM dataset, which are commonly used for brain tumor detection and segmentation.

Neural networks with personalized training for improved MOLLI T<sub>1</sub> mapping.

Gkatsoni O, Xanthis CG, Johansson S, Heiberg E, Arheden H, Aletras AH

pubmed logopapersJul 1 2025
The aim of this study was to develop a method for personalized training of Deep Neural Networks by means of an MRI simulator to improve MOLLI native T<sub>1</sub> estimates relative to conventional fitting methods. The proposed Personalized Training Neural Network (PTNN) for T<sub>1</sub> mapping was based on a neural network which was trained with simulated MOLLI signals generated for each individual scan, taking into account both the pulse sequence parameters and the heart rate triggers of the specific healthy volunteer. Experimental data from eleven phantoms and ten healthy volunteers were included in the study. In phantom studies, agreement between T<sub>1</sub> reference values and those obtained with the PTNN yielded a statistically significant smaller bias than conventional fitting estimates (-26.69 ± 29.5ms vs. -65.0 ± 33.25ms, p < 0.001). For in vivo studies, T<sub>1</sub> estimates derived from the PTNN yielded higher T<sub>1</sub> values (1152.4 ± 25.8ms myocardium, 1640.7 ± 30.6ms blood) than conventional fitting (1050.8 ± 24.7ms myocardium, 1597.2 ± 39.9ms blood). For PTNN, shortening the acquisition time by eliminating the pause between inversion pulses yielded higher myocardial T<sub>1</sub> values (1162.2 ± 19.7ms with pause vs. 1127.1 ± 19.7ms, p = 0.01 myocardium), (1624.7 ± 33.9ms with pause vs. 1645.4 ± 18.7ms, p = 0.16 blood). For conventional fitting statistically significant differences were found. Compared to T<sub>1</sub> maps derived by conventional fitting, PTNN is a post-processing method that yielded T<sub>1</sub> maps with higher values and better accuracy in phantoms for a physiological range of T<sub>1</sub> and T<sub>2</sub> values. In normal volunteers PTNN yielded higher T<sub>1</sub> values even with a shorter acquisition scheme of eight heartbeats scan time, without deploying new pulse sequences.

A Deep Learning Approach for Nerve Injury Classification in Brachial Plexopathies Using Magnetic Resonance Neurography with Modified Hiking Optimization Algorithm.

Dahou A, Elaziz MA, Khattap MG, Hassan HGEMA

pubmed logopapersJul 1 2025
Brachial plexopathies (BPs) encompass a complex spectrum of nerve injuries affecting motor and sensory function in the upper extremities. Diagnosis is challenging due to the intricate anatomy and symptom overlap with other neuropathies. Magnetic Resonance Neurography (MRN) provides advanced imaging but requires specialized interpretation. This study proposes an AI-based framework that combines deep learning (DL) with the modified Hiking Optimization Algorithm (MHOA) enhanced by a Comprehensive Learning (CL) technique to improve the classification of nerve injuries (neuropraxia, axonotmesis, neurotmesis) using MRN data. The framework utilizes MobileNetV4 for feature extraction and MHOA for optimized feature selection across different MRI sequences (STIR, T2, T1, and DWI). A dataset of 39 patients diagnosed with BP was used. The framework classifies injuries based on Seddon's criteria, distinguishing between normal and abnormal conditions as well as injury severity. The model achieved excellent performance, with 1.0000 accuracy in distinguishing normal from abnormal conditions using STIR and T2 sequences. For injury severity classification, accuracy was 0.9820 in STIR, outperforming the original HOA and other metaheuristic algorithms. Additionally, high classification accuracy (0.9667) was observed in DWI. The proposed framework outperformed traditional methods and demonstrated high sensitivity and specificity. The proposed AI-based framework significantly improves the diagnosis of BP by accurately classifying nerve injury types. By integrating DL and optimization techniques, it reduces diagnostic variability, making it a valuable tool for clinical settings with limited specialized neuroimaging expertise. This framework has the potential to enhance clinical decision-making and optimize patient outcomes through precise and timely diagnoses.

Visualizing Preosteoarthritis: Updates on UTE-Based Compositional MRI and Deep Learning Algorithms.

Sun D, Wu G, Zhang W, Gharaibeh NM, Li X

pubmed logopapersJul 1 2025
Osteoarthritis (OA) is heterogeneous and involves structural changes in the whole joint, such as cartilage, meniscus/labrum, ligaments, and tendons, mainly with short T2 relaxation times. Detecting OA before the onset of irreversible changes is crucial for early proactive management and limit growing disease burden. The more recent advanced quantitative imaging techniques and deep learning (DL) algorithms in musculoskeletal imaging have shown great potential for visualizing "pre-OA." In this review, we first focus on ultrashort echo time-based magnetic resonance imaging (MRI) techniques for direct visualization as well as quantitative morphological and compositional assessment of both short- and long-T2 musculoskeletal tissues, and second explore how DL revolutionize the way of MRI analysis (eg, automatic tissue segmentation and extraction of quantitative image biomarkers) and the classification, prediction, and management of OA. PLAIN LANGUAGE SUMMARY: Detecting osteoarthritis (OA) before the onset of irreversible changes is crucial for early proactive management. OA is heterogeneous and involves structural changes in the whole joint, such as cartilage, meniscus/labrum, ligaments, and tendons, mainly with short T2 relaxation times. Ultrashort echo time-based magnetic resonance imaging (MRI), in particular, enables direct visualization and quantitative compositional assessment of short-T2 tissues. Deep learning is revolutionizing the way of MRI analysis (eg, automatic tissue segmentation and extraction of quantitative image biomarkers) and the detection, classification, and prediction of disease. They together have made further advances toward identification of imaging biomarkers/features for pre-OA. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.

Liver Fat Fraction and Machine Learning Improve Steatohepatitis Diagnosis in Liver Transplant Patients.

Hajek M, Sedivy P, Burian M, Mikova I, Trunecka P, Pajuelo D, Dezortova M

pubmed logopapersJul 1 2025
Machine learning identifies liver fat fraction (FF) measured by <sup>1</sup>H MR spectroscopy, insulinemia, and elastography as robust, non-invasive biomarkers for diagnosing steatohepatitis in liver transplant patients, validated through decision tree analysis. Compared to the general population (~5.8% prevalence), MASH is significantly more common in liver transplant recipients (~30%-50%). In patients with FF > 5.3%, the positive predictive value for MASH ranged up to 97%, more than twice the value observed in the general population.

Intermuscular adipose tissue and lean muscle mass assessed with MRI in people with chronic back pain in Germany: a retrospective observational study.

Ziegelmayer S, Häntze H, Mertens C, Busch F, Lemke T, Kather JN, Truhn D, Kim SH, Wiestler B, Graf M, Kader A, Bamberg F, Schlett CL, Weiss JB, Schulz-Menger J, Ringhof S, Can E, Pischon T, Niendorf T, Lammert J, Schulze M, Keil T, Peters A, Hadamitzky M, Makowski MR, Adams L, Bressem K

pubmed logopapersJul 1 2025
Chronic back pain (CBP) affects over 80 million people in Europe, contributing to substantial healthcare costs and disability. Understanding modifiable risk factors, such as muscle composition, may aid in prevention and treatment. This study investigates the association between lean muscle mass (LMM) and intermuscular adipose tissue (InterMAT) with CBP using noninvasive whole-body magnetic resonance imaging (MRI). This cross-sectional analysis used whole-body MRI data from 30,868 participants in the German National Cohort (NAKO), collected between 1 May 2014 and 1 September 2019. CBP was defined as back pain persisting >3 months. LMM and InterMAT were quantified via MRI-based muscle segmentations using a validated deep learning model. Associations were analyzed using mixed logistic regression, adjusting for age, sex, diabetes, dyslipidemia, osteoporosis, osteoarthritis, physical activity, and study site. Among 27,518 participants (n = 12,193/44.3% female, n = 14,605/55.7% male; median age 49 years IQR 41; 57), 21.8% (n = 6003; n = 2999/50.0% female, n = 3004/50% male; median age 53 years IQR 46; 60) reported CBP, compared to 78.2% (n = 21,515; n = 9194/42.7% female, n = 12,321/57.3% male; median age 48 years IQR 39; 56) who did not. CBP prevalence was highest in those with low (<500 MET min/week) or high (>5000 MET min/week) self-reported physical activity levels (24.6% (n = 10,892) and 22.0% (n = 3800), respectively) compared to moderate (500-5000 MET min/week) levels (19.4% (n = 12,826); p < 0.0001). Adjusted analyses revealed that a higher InterMAT (OR 1.22 per 2-unit Z-score; 95% CI 1.13-1.30; p < 0.0001) was associated with an increased likelihood of chronic back pain (CBP), whereas higher lean muscle mass (LMM) (OR 0.87 per 2-unit Z-score; 95% CI 0.79-0.95; p = 0.003) was associated with a reduced likelihood of CBP. Stratified analyses confirmed these associations persisted in individuals with osteoarthritis (OA-CBP LMM: 22.9 cm<sup>3</sup>/kg/m; InterMAT: 7.53% vs OA-No CBP LMM: 24.3 cm<sup>3</sup>/kg/m; InterMAT: 6.96% both p < 0.0001) and osteoporosis (OP-CBP LMM: 20.9 cm<sup>3</sup>/kg/m; InterMAT: 8.43% vs OP-No CBP LMM: 21.3 cm<sup>3</sup>/kg/m; InterMAT: 7.9% p = 0.16 and p = 0.0019). Higher pain intensity (Pain Intensity Numerical Rating Scale ≥4) correlated with lower LMM (2-unit Z-score deviation = OR, 0.63; 95% CI, 0.57-0.70; p < 0.0001) and higher InterMAT (2-unit Z-score deviation = OR, 1.22; 95% CI, 1.13-1.30; p < 0.0001), independent of physical activity, osteoporosis and osteoarthritis. This large, population-based study highlights the associations of InterMAT and LMM with CBP. Given the limitations of the cross-sectional design, our findings can be seen as an impetus for further causal investigations within a broader, multidisciplinary framework to guide future research toward improved prevention and treatment. The NAKO is funded by the Federal Ministry of Education and Research (BMBF) [project funding reference numbers: 01ER1301A/B/C, 01ER1511D, 01ER1801A/B/C/D and 01ER2301A/B/C], federal states of Germany and the Helmholtz Association, the participating universities and the institutes of the Leibniz Association.

Spondyloarthritis Research and Treatment Network (SPARTAN) Clinical and Imaging Year in Review 2024.

Ferrandiz-Espadin R, Liew JW

pubmed logopapersJul 1 2025
Diagnostic delay remains a critical challenge in axial spondyloarthritis (axSpA). This review highlights key clinical and imaging research from 2024 that addresses this persistent issue, with a focus on the evolving roles of MRI, artificial intelligence (AI), and updated Canadian management recommendations. Multiple studies published in 2024 emphasized the continued problem of diagnostic delay in axSpA. Studies support the continued use of sacroiliac joint MRI as a central diagnostic tool for axSpA, particularly in patients with chronic back pain and associated conditions like uveitis, psoriasis (PsO), or inflammatory bowel disease. AI-based tools for interpreting sacroiliac joint MRIs demonstrated moderate agreement with expert assessments, offering a potential solution to variability and limited access to expert musculoskeletal radiology. These innovations may support earlier diagnosis and reduce misclassification. Innovative models of care, including patient-initiated telemedicine visits, reduced in-person visit frequency without compromising clinical outcomes in patients with stable axSpA. Updated Canadian treatment guidelines introduced more robust data on Janus kinase (JAK) inhibitors and offered stronger support for tapering biologics in patients with sustained low disease activity or remission, while advising against abrupt discontinuation. This clinical and imaging year in review covers challenges and innovations in axSpA, emphasizing the need for early access to care and the development of tools to support prompt diagnosis and sustained continuity of care.
Page 59 of 1241236 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.