Sort by:
Page 58 of 65642 results

Portable Ultrasound Bladder Volume Measurement Over Entire Volume Range Using a Deep Learning Artificial Intelligence Model in a Selected Cohort: A Proof of Principle Study.

Jeong HJ, Seol A, Lee S, Lim H, Lee M, Oh SJ

pubmed logopapersMay 19 2025
We aimed to prospectively investigate whether bladder volume measured using deep learning artificial intelligence (AI) algorithms (AI-BV) is more accurate than that measured using conventional methods (C-BV) if using a portable ultrasound bladder scanner (PUBS). Patients who underwent filling cystometry because of lower urinary tract symptoms between January 2021 and July 2022 were enrolled. Every time the bladder was filled serially with normal saline from 0 mL to maximum cystometric capacity in 50 mL increments, C-BV was measured using PUBS. Ultrasound images obtained during this process were manually annotated to define the bladder contour, which was used to build a deep learning AI model. The true bladder volume (T-BV) for each bladder volume range was compared with C-BV and AI-BV for analysis. We enrolled 250 patients (213 men and 37 women), and a deep learning AI model was established using 1912 bladder images. There was a significant difference between C-BV (205.5 ± 170.8 mL) and T-BV (190.5 ± 165.7 mL) (p = 0.001), but no significant difference between AI-BV (197.0 ± 161.1 mL) and T-BV (190.5 ± 165.7 mL) (p = 0.081). In bladder volume ranges of 101-150, 151-200, and 201-300 mL, there were significant differences in the percentage of volume differences between [C-BV and T-BV] and [AI-BV and T-BV] (p < 0.05), but no significant difference if converted to absolute values (p > 0.05). C-BV (R<sup>2</sup> = 0.91, p < 0.001) and AI-BV (R<sup>2</sup> = 0.90, p < 0.001) were highly correlated with T-BV. The mean difference between AI-BV and T-BV (6.5 ± 50.4) was significantly smaller than that between C-BV and T-BV (15.0 ± 50.9) (p = 0.001). Following image pre-processing, deep learning AI-BV more accurately estimated true BV than conventional methods in this selected cohort on internal validation. Determination of the clinical relevance of these findings and performance in external cohorts requires further study. The clinical trial was conducted using an approved product for its approved indication, so approval from the Ministry of Food and Drug Safety (MFDS) was not required. Therefore, there is no clinical trial registration number.

Prediction of prognosis of immune checkpoint inhibitors combined with anti-angiogenic agents for unresectable hepatocellular carcinoma by machine learning-based radiomics.

Xu X, Jiang X, Jiang H, Yuan X, Zhao M, Wang Y, Chen G, Li G, Duan Y

pubmed logopapersMay 19 2025
This study aims to develop and validate a novel radiomics model utilizing magnetic resonance imaging (MRI) to predict progression-free survival (PFS) in patients with unresectable hepatocellular carcinoma (uHCC) who are receiving a combination of immune checkpoint inhibitors (ICIs) and antiangiogenic agents. This is an area that has not been previously explored using MRI-based radiomics. 111 patients with uHCC were enrolled in this study. After performing univariate cox regression and the least absolute shrinkage and selection operator (LASSO) algorithms to extract radiological features, the Rad-score was calculated through a Cox proportional hazards regression model and a random survival forest (RSF) model. The optimal calculation method was selected by comparing the Harrell's concordance index (C-index) values. The Rad-score was then combined with independent clinical risk factors to create a nomogram. C-index, time-dependent receiver operating characteristics (ROC) curves, calibration curves, and decision curve analysis were employed to assess the forecast ability of the risk models. The combined nomogram incorporated independent clinical factors and Rad-score calculated by RSF demonstrated better prognosis prediction for PFS, with C-index of 0.846, 0.845, separately in the training and the validation cohorts. This indicates that our model performs well and has the potential to enable more precise patient stratification and personalized treatment strategies. Based on the risk level, the participants were classified into two distinct groups: the high-risk signature (HRS) group and the low-risk signature (LRS) group, with a significant difference between the groups (P < 0.01). The effective clinical-radiomics nomogram based on MRI imaging is a promising tool in predicting the prognosis in uHCC patients receiving ICIs combined with anti-angiogenic agents, potentially leading to more effective clinical outcomes.

Deep learning models based on multiparametric magnetic resonance imaging and clinical parameters for identifying synchronous liver metastases from rectal cancer.

Sun J, Wu PY, Shen F, Chen X, She J, Luo M, Feng F, Zheng D

pubmed logopapersMay 19 2025
To establish and validate deep learning (DL) models based on pre-treatment multiparametric magnetic resonance imaging (MRI) images of primary rectal cancer and basic clinical data for the prediction of synchronous liver metastases (SLM) in patients with Rectal cancer (RC). In this retrospective study, 176 and 31 patients with RC who underwent multiparametric MRI from two centers were enrolled in the primary and external validation cohorts, respectively. Clinical factors, including sex, primary tumor site, CEA level, and CA199 level were assessed. A clinical feature (CF) model was first developed by multivariate logistic regression, then two residual network DL models were constructed based on multiparametric MRI of primary cancer with or without CF incorporation. Finally, the SLM prediction models were validated by 5-fold cross-validation and external validation. The performance of the models was evaluated by decision curve analysis (DCA) and receiver operating characteristic (ROC) analysis. Among three SLM prediction models, the Combined DL model integrating primary tumor MRI and basic clinical data achieved the best performance (AUC = 0.887 in primary study cohort; AUC = 0.876 in the external validation cohort). In the primary study cohort, the CF model, MRI DL model, and Combined DL model achieved AUCs of 0.816 (95% CI: 0.750, 0.881), 0.788 (95% CI: 0.720, 0.857), and 0.887 (95% CI: 0.834, 0.940) respectively. In the external validation cohort, the CF model, DL model without CF, and DL model with CF achieved AUCs of 0.824 (95% CI: 0.664, 0.984), 0.662 (95% CI: 0.461, 0.863), and 0.876 (95% CI: 0.728, 1.000), respectively. The combined DL model demonstrates promising potential to predict SLM in patients with RC, thereby making individualized imaging test strategies. Accurate synchronous liver metastasis (SLM) risk stratification is important for treatment planning and prognosis improvement. The proposed DL signature may be employed to better understand an individual patient's SLM risk, aiding in treatment planning and selection of further imaging examinations to personalize clinical decisions. Not applicable.

Advances in pancreatic cancer diagnosis: from DNA methylation to AI-Assisted imaging.

Sharma R, Komal K, Kumar S, Ghosh R, Pandey P, Gupta GD, Kumar M

pubmed logopapersMay 19 2025
Pancreatic Cancer (PC) is a highly aggressive tumor that is mainly diagnosed at later stages. Various imaging technologies, such as CT, MRI, and EUS, possess limitations in early PC diagnosis. Therefore, this review article explores the various innovative biomarkers for PC detection, such as DNA methylation, Noncoding RNAs, and proteomic biomarkers, and the role of AI in PC detection at early stages. Innovative biomarkers, such as DNA methylation genes, show higher specificity and sensitivity in PC diagnosis. Additionally, various non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs, show high diagnostic accuracy and serve as diagnostic and prognostic biomarkers. Additionally, proteomic biomarkers retain higher diagnostic accuracy in different body fluids. Apart from this, the utilization of AI showed that AI surpassed the radiologist's diagnostic performance in PC detection. The combination of AI and advanced biomarkers can revolutionize early PC detection. However, large-scale, prospective studies are needed to validate its clinical utility. Further. standardization of biomarker panels and AI algorithms is a vital step toward their reliable applications in early PC detection, ultimately improving patient outcomes.

Federated Learning for Renal Tumor Segmentation and Classification on Multi-Center MRI Dataset.

Nguyen DT, Imami M, Zhao LM, Wu J, Borhani A, Mohseni A, Khunte M, Zhong Z, Shi V, Yao S, Wang Y, Loizou N, Silva AC, Zhang PJ, Zhang Z, Jiao Z, Kamel I, Liao WH, Bai H

pubmed logopapersMay 19 2025
Deep learning (DL) models for accurate renal tumor characterization may benefit from multi-center datasets for improved generalizability; however, data-sharing constraints necessitate privacy-preserving solutions like federated learning (FL). To assess the performance and reliability of FL for renal tumor segmentation and classification in multi-institutional MRI datasets. Retrospective multi-center study. A total of 987 patients (403 female) from six hospitals were included for analysis. 73% (723/987) had malignant renal tumors, primarily clear cell carcinoma (n = 509). Patients were split into training (n = 785), validation (n = 104), and test (n = 99) sets, stratified across three simulated institutions. MRI was performed at 1.5 T and 3 T using T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (CE-T1WI) sequences. FL and non-FL approaches used nnU-Net for tumor segmentation and ResNet for its classification. FL-trained models across three simulated institutional clients with central weight aggregation, while the non-FL approach used centralized training on the full dataset. Segmentation was evaluated using Dice coefficients, and classification between malignant and benign lesions was assessed using accuracy, sensitivity, specificity, and area under the curves (AUCs). FL and non-FL performance was compared using the Wilcoxon test for segmentation Dice and Delong's test for AUC (p < 0.05). No significant difference was observed between FL and non-FL models in segmentation (Dice: 0.43 vs. 0.45, p = 0.202) or classification (AUC: 0.69 vs. 0.64, p = 0.959) on the test set. For classification, no significant difference was observed between the models in accuracy (p = 0.912), sensitivity (p = 0.862), or specificity (p = 0.847) on the test set. FL demonstrated comparable performance to non-FL approaches in renal tumor segmentation and classification, supporting its potential as a privacy-preserving alternative for multi-institutional DL models. 4. Stage 2.

Transformer model based on Sonazoid contrast-enhanced ultrasound for microvascular invasion prediction in hepatocellular carcinoma.

Qin Q, Pang J, Li J, Gao R, Wen R, Wu Y, Liang L, Que Q, Liu C, Peng J, Lv Y, He Y, Lin P, Yang H

pubmed logopapersMay 19 2025
Microvascular invasion (MVI) is strongly associated with the prognosis of patients with hepatocellular carcinoma (HCC). To evaluate the value of Transformer models with Sonazoid contrast-enhanced ultrasound (CEUS) in the preoperative prediction of MVI. This retrospective study included 164 HCC patients. Deep learning features and radiomic features were extracted from arterial and Kupffer phase images, alongside the collection of clinicopathological parameters. Normality was assessed using the Shapiro-Wilk test. The Mann‒Whitney U-test and least absolute shrinkage and selection operator algorithm were applied to screen features. Transformer, radiomic, and clinical prediction models for MVI were constructed with logistic regression. Repeated random splits followed a 7:3 ratio, with model performance evaluated over 50 iterations. The area under the receiver operating characteristic curve (AUC, 95% confidence interval [CI]), sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), decision curve, and calibration curve were used to evaluate the performance of the models. The DeLong test was applied to compare performance between models. The Bonferroni method was used to control type I error rates arising from multiple comparisons. A two-sided p-value of < 0.05 was considered statistically significant. In the training set, the diagnostic performance of the arterial-phase Transformer (AT) and Kupffer-phase Transformer (KT) models were better than that of the radiomic and clinical (Clin) models (p < 0.0001). In the validation set, both the AT and KT models outperformed the radiomic and Clin models in terms of diagnostic performance (p < 0.05). The AUC (95% CI) for the AT model was 0.821 (0.72-0.925) with an accuracy of 80.0%, and the KT model was 0.859 (0.766-0.977) with an accuracy of 70.0%. Logistic regression analysis indicated that tumor size (p = 0.016) and alpha-fetoprotein (AFP) (p = 0.046) were independent predictors of MVI. Transformer models using Sonazoid CEUS have potential for effectively identifying MVI-positive patients preoperatively.

Machine Learning-Based Dose Prediction in [<sup>177</sup>Lu]Lu-PSMA-617 Therapy by Integrating Biomarkers and Radiomic Features from [<sup>68</sup>Ga]Ga-PSMA-11 PET/CT.

Yazdani E, Sadeghi M, Karamzade-Ziarati N, Jabari P, Amini P, Vosoughi H, Akbari MS, Asadi M, Kheradpisheh SR, Geramifar P

pubmed logopapersMay 18 2025
The study aimed to develop machine learning (ML) models for pretherapy prediction of absorbed doses (ADs) in kidneys and tumoral lesions for metastatic castration-resistant prostate cancer (mCRPC) patients undergoing [<sup>177</sup>Lu]Lu-PSMA-617 (Lu-PSMA) radioligand therapy (RLT). By leveraging radiomic features (RFs) from [<sup>68</sup>Ga]Ga-PSMA-11 (Ga-PSMA) PET/CT scans and clinical biomarkers (CBs), the approach has the potential to improve patient selection and tailor dosimetry-guided therapy. Twenty patients with mCRPC underwent Ga-PSMA PET/CT scans prior to the administration of an initial 6.8±0.4 GBq dose of the first Lu-PSMA RLT cycle. Post-therapy dosimetry involved sequential scintigraphy imaging at approximately 4, 48, and 72 h, along with a SPECT/CT image at around 48 h, to calculate time-integrated activity (TIA) coefficients. Monte Carlo (MC) simulations, leveraging the Geant4 application for tomographic emission (GATE) toolkit, were employed to derive ADs. The ML models were trained using pretherapy RFs from Ga-PSMA PET/CT and CBs as input, while the ADs in kidneys and lesions (n=130), determined using MC simulations from scintigraphy and SPECT imaging, served as the ground truth. Model performance was assessed through leave-one-out cross-validation (LOOCV), with evaluation metrics including R² and root mean squared error (RMSE). The mean delivered ADs were 0.88 ± 0.34 Gy/GBq for kidneys and 2.36 ± 2.10 Gy/GBq for lesions. Combining CBs with the best RFs produced optimal results: the extra trees regressor (ETR) was the best ML model for predicting kidney ADs, achieving an RMSE of 0.11 Gy/GBq and an R² of 0.87. For lesion ADs, the gradient boosting regressor (GBR) performed best, with an RMSE of 1.04 Gy/GBq and an R² of 0.77. Integrating pretherapy Ga-PSMA PET/CT RFs with CBs shows potential in predicting ADs in RLT. To personalize treatment planning and enhance patient stratification, it is crucial to validate these preliminary findings with a larger sample size and an independent cohort.

OpenPros: A Large-Scale Dataset for Limited View Prostate Ultrasound Computed Tomography

Hanchen Wang, Yixuan Wu, Yinan Feng, Peng Jin, Shihang Feng, Yiming Mao, James Wiskin, Baris Turkbey, Peter A. Pinto, Bradford J. Wood, Songting Luo, Yinpeng Chen, Emad Boctor, Youzuo Lin

arxiv logopreprintMay 18 2025
Prostate cancer is one of the most common and lethal cancers among men, making its early detection critically important. Although ultrasound imaging offers greater accessibility and cost-effectiveness compared to MRI, traditional transrectal ultrasound methods suffer from low sensitivity, especially in detecting anteriorly located tumors. Ultrasound computed tomography provides quantitative tissue characterization, but its clinical implementation faces significant challenges, particularly under anatomically constrained limited-angle acquisition conditions specific to prostate imaging. To address these unmet needs, we introduce OpenPros, the first large-scale benchmark dataset explicitly developed for limited-view prostate USCT. Our dataset includes over 280,000 paired samples of realistic 2D speed-of-sound (SOS) phantoms and corresponding ultrasound full-waveform data, generated from anatomically accurate 3D digital prostate models derived from real clinical MRI/CT scans and ex vivo ultrasound measurements, annotated by medical experts. Simulations are conducted under clinically realistic configurations using advanced finite-difference time-domain and Runge-Kutta acoustic wave solvers, both provided as open-source components. Through comprehensive baseline experiments, we demonstrate that state-of-the-art deep learning methods surpass traditional physics-based approaches in both inference efficiency and reconstruction accuracy. Nevertheless, current deep learning models still fall short of delivering clinically acceptable high-resolution images with sufficient accuracy. By publicly releasing OpenPros, we aim to encourage the development of advanced machine learning algorithms capable of bridging this performance gap and producing clinically usable, high-resolution, and highly accurate prostate ultrasound images. The dataset is publicly accessible at https://open-pros.github.io/.

ChatGPT-4-Driven Liver Ultrasound Radiomics Analysis: Advantages and Drawbacks Compared to Traditional Techniques.

Sultan L, Venkatakrishna SSB, Anupindi S, Andronikou S, Acord M, Otero H, Darge K, Sehgal C, Holmes J

pubmed logopapersMay 18 2025
Artificial intelligence (AI) is transforming medical imaging, with large language models such as ChatGPT-4 emerging as potential tools for automated image interpretation. While AI-driven radiomics has shown promise in diagnostic imaging, the efficacy of ChatGPT-4 in liver ultrasound analysis remains largely unexamined. This study evaluates the capability of ChatGPT-4 in liver ultrasound radiomics, specifically its ability to differentiate fibrosis, steatosis, and normal liver tissue, compared to conventional image analysis software. Seventy grayscale ultrasound images from a preclinical liver disease model, including fibrosis (n=31), fatty liver (n=18), and normal liver (n=21), were analyzed. ChatGPT-4 extracted texture features, which were compared to those obtained using Interactive Data Language (IDL), a traditional image analysis software. One-way ANOVA was used to identify statistically significant features differentiating liver conditions, and logistic regression models were employed to assess diagnostic performance. ChatGPT-4 extracted nine key textural features-echo intensity, heterogeneity, skewness, kurtosis, contrast, homogeneity, dissimilarity, angular second moment, and entropy-all of which significantly differed across liver conditions (p < 0.05). Among individual features, echo intensity achieved the highest F1-score (0.85). When combined, ChatGPT-4 attained 76% accuracy and 83% sensitivity in classifying liver disease. ROC analysis demonstrated strong discriminatory performance, with AUC values of 0.75 for fibrosis, 0.87 for normal liver, and 0.97 for steatosis. Compared to Interactive Data Language (IDL) image analysis software, ChatGPT-4 exhibited slightly lower sensitivity (0.83 vs. 0.89) but showed moderate correlation (R = 0.68, p < 0.0001) with IDL-derived features. However, it significantly outperformed IDL in processing efficiency, reducing analysis time by 40%, highlighting its potential for high throughput radiomic analysis. Despite slightly lower sensitivity than IDL, ChatGPT-4 demonstrated high feasibility for ultrasound radiomics, offering faster processing, high-throughput analysis, and automated multi-image evaluation. These findings support its potential integration into AI-driven imaging workflows, with further refinements needed to enhance feature reproducibility and diagnostic accuracy.

Deep learning feature-based model for predicting lymphovascular invasion in urothelial carcinoma of bladder using CT images.

Xiao B, Lv Y, Peng C, Wei Z, Xv Q, Lv F, Jiang Q, Liu H, Li F, Xv Y, He Q, Xiao M

pubmed logopapersMay 18 2025
Lymphovascular invasion significantly impacts the prognosis of urothelial carcinoma of the bladder. Traditional lymphovascular invasion detection methods are time-consuming and costly. This study aims to develop a deep learning-based model to preoperatively predict lymphovascular invasion status in urothelial carcinoma of bladder using CT images. Data and CT images of 577 patients across four medical centers were retrospectively collected. The largest tumor slices from the transverse, coronal, and sagittal planes were selected and used to train CNN models (InceptionV3, DenseNet121, ResNet18, ResNet34, ResNet50, and VGG11). Deep learning features were extracted and visualized using Grad-CAM. Principal Component Analysis reduced features to 64. Using the extracted features, Decision Tree, XGBoost, and LightGBM models were trained with 5-fold cross-validation and ensembled in a stacking model. Clinical risk factors were identified through logistic regression analyses and combined with DL scores to enhance lymphovascular invasion prediction accuracy. The ResNet50-based model achieved an AUC of 0.818 in the validation set and 0.708 in the testing set. The combined model showed an AUC of 0.794 in the validation set and 0.767 in the testing set, demonstrating robust performance across diverse data. We developed a robust radiomics model based on deep learning features from CT images to preoperatively predict lymphovascular invasion status in urothelial carcinoma of the bladder. This model offers a non-invasive, cost-effective tool to assist clinicians in personalized treatment planning. We developed a robust radiomics model based on deep learning features from CT images to preoperatively predict lymphovascular invasion status in urothelial carcinoma of the bladder. We developed a deep learning feature-based stacking model to predict lymphovascular invasion in urothelial carcinoma of the bladder patients using CT. Max cross sections from three dimensions of the CT image are used to train the CNN model. We made comparisons across six CNN networks, including ResNet50.
Page 58 of 65642 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.