Sort by:
Page 57 of 1421420 results

OctreeNCA: Single-Pass 184 MP Segmentation on Consumer Hardware

Nick Lemke, John Kalkhof, Niklas Babendererde, Anirban Mukhopadhyay

arxiv logopreprintAug 9 2025
Medical applications demand segmentation of large inputs, like prostate MRIs, pathology slices, or videos of surgery. These inputs should ideally be inferred at once to provide the model with proper spatial or temporal context. When segmenting large inputs, the VRAM consumption of the GPU becomes the bottleneck. Architectures like UNets or Vision Transformers scale very poorly in VRAM consumption, resulting in patch- or frame-wise approaches that compromise global consistency and inference speed. The lightweight Neural Cellular Automaton (NCA) is a bio-inspired model that is by construction size-invariant. However, due to its local-only communication rules, it lacks global knowledge. We propose OctreeNCA by generalizing the neighborhood definition using an octree data structure. Our generalized neighborhood definition enables the efficient traversal of global knowledge. Since deep learning frameworks are mainly developed for large multi-layer networks, their implementation does not fully leverage the advantages of NCAs. We implement an NCA inference function in CUDA that further reduces VRAM demands and increases inference speed. Our OctreeNCA segments high-resolution images and videos quickly while occupying 90% less VRAM than a UNet during evaluation. This allows us to segment 184 Megapixel pathology slices or 1-minute surgical videos at once.

Self-supervised disc and cup segmentation via non-local deformable convolution and adaptive transformer.

Zhao W, Wang Y

pubmed logopapersAug 9 2025
Optic disc and cup segmentation is a crucial subfield of computer vision, playing a pivotal role in automated pathological image analysis. It enables precise, efficient, and automated diagnosis of ocular conditions, significantly aiding clinicians in real-world medical applications. However, due to the scarcity of medical segmentation data and the insufficient integration of global contextual information, the segmentation accuracy remains suboptimal. This issue becomes particularly pronounced in optic disc and cup cases with complex anatomical structures and ambiguous boundaries.In order to address these limitations, this paper introduces a self-supervised training strategy integrated with a newly designed network architecture to improve segmentation accuracy.Specifically,we initially propose a non-local dual deformable convolutional block,which aims to capture the irregular image patterns(i.e. boundary).Secondly,we modify the traditional vision transformer and design an adaptive K-Nearest Neighbors(KNN) transformation block to extract the global semantic context from images. Finally,an initialization strategy based on self-supervised training is proposed to reduce the burden on the network on labeled data.Comprehensive experimental evaluations demonstrate the effectiveness of our proposed method, which outperforms previous networks and achieves state-of-the-art performance,with IOU scores of 0.9577 for the optic disc and 0.8399 for the optic cup on the REFUGE dataset.

LWT-ARTERY-LABEL: A Lightweight Framework for Automated Coronary Artery Identification

Shisheng Zhang, Ramtin Gharleghi, Sonit Singh, Daniel Moses, Dona Adikari, Arcot Sowmya, Susann Beier

arxiv logopreprintAug 9 2025
Coronary artery disease (CAD) remains the leading cause of death globally, with computed tomography coronary angiography (CTCA) serving as a key diagnostic tool. However, coronary arterial analysis using CTCA, such as identifying artery-specific features from computational modelling, is labour-intensive and time-consuming. Automated anatomical labelling of coronary arteries offers a potential solution, yet the inherent anatomical variability of coronary trees presents a significant challenge. Traditional knowledge-based labelling methods fall short in leveraging data-driven insights, while recent deep-learning approaches often demand substantial computational resources and overlook critical clinical knowledge. To address these limitations, we propose a lightweight method that integrates anatomical knowledge with rule-based topology constraints for effective coronary artery labelling. Our approach achieves state-of-the-art performance on benchmark datasets, providing a promising alternative for automated coronary artery labelling.

BrainATCL: Adaptive Temporal Brain Connectivity Learning for Functional Link Prediction and Age Estimation

Yiran Huang, Amirhossein Nouranizadeh, Christine Ahrends, Mengjia Xu

arxiv logopreprintAug 9 2025
Functional Magnetic Resonance Imaging (fMRI) is an imaging technique widely used to study human brain activity. fMRI signals in areas across the brain transiently synchronise and desynchronise their activity in a highly structured manner, even when an individual is at rest. These functional connectivity dynamics may be related to behaviour and neuropsychiatric disease. To model these dynamics, temporal brain connectivity representations are essential, as they reflect evolving interactions between brain regions and provide insight into transient neural states and network reconfigurations. However, conventional graph neural networks (GNNs) often struggle to capture long-range temporal dependencies in dynamic fMRI data. To address this challenge, we propose BrainATCL, an unsupervised, nonparametric framework for adaptive temporal brain connectivity learning, enabling functional link prediction and age estimation. Our method dynamically adjusts the lookback window for each snapshot based on the rate of newly added edges. Graph sequences are subsequently encoded using a GINE-Mamba2 backbone to learn spatial-temporal representations of dynamic functional connectivity in resting-state fMRI data of 1,000 participants from the Human Connectome Project. To further improve spatial modeling, we incorporate brain structure and function-informed edge attributes, i.e., the left/right hemispheric identity and subnetwork membership of brain regions, enabling the model to capture biologically meaningful topological patterns. We evaluate our BrainATCL on two tasks: functional link prediction and age estimation. The experimental results demonstrate superior performance and strong generalization, including in cross-session prediction scenarios.

Supporting intraoperative margin assessment using deep learning for automatic tumour segmentation in breast lumpectomy micro-PET-CT.

Maris L, Göker M, De Man K, Van den Broeck B, Van Hoecke S, Van de Vijver K, Vanhove C, Keereman V

pubmed logopapersAug 9 2025
Complete tumour removal is vital in curative breast cancer (BCa) surgery to prevent recurrence. Recently, [<sup>18</sup>F]FDG micro-PET-CT of lumpectomy specimens has shown promise for intraoperative margin assessment (IMA). To aid interpretation, we trained a 2D Residual U-Net to delineate invasive carcinoma of no special type in micro-PET-CT lumpectomy images. We collected 53 BCa lamella images from 19 patients with true histopathology-defined tumour segmentations. Group five-fold cross-validation yielded a dice similarity coefficient of 0.71 ± 0.20 for segmentation. Afterwards, an ensemble model was generated to segment tumours and predict margin status. Comparing predicted and true histopathological margin status in a separate set of 31 micro-PET-CT lumpectomy images of 31 patients achieved an F1 score of 84%, closely matching the mean performance of seven physicians who manually interpreted the same images. This model represents an important step towards a decision-support system that enhances micro-PET-CT-based IMA in BCa, facilitating its clinical adoption.

Explainable Cryobiopsy AI Model, CRAI, to Predict Disease Progression for Transbronchial Lung Cryobiopsies with Interstitial Pneumonia

Uegami, W., Okoshi, E. N., Lami, K., Nei, Y., Ozasa, M., Kataoka, K., Kitamura, Y., Kohashi, Y., Cooper, L. A. D., Sakanashi, H., Saito, Y., Kondoh, Y., the study group on CRYOSOLUTION,, Fukuoka, J.

medrxiv logopreprintAug 8 2025
BackgroundInterstitial lung disease (ILD) encompasses diverse pulmonary disorders with varied prognoses. Current pathological diagnoses suffer from inter-observer variability,necessitating more standardized approaches. We developed an ensemble model AI for cryobiopsy, CRAI, an artificial intelligence model to analyze transbronchial lung cryobiopsy (TBLC) specimens and predict patient outcomes. MethodsWe developed an explainable AI model, CRAI, to analyze TBLC. CRAI comprises seven modules for detecting histological features, generating 19 pathologically significant findings. A downstream XGBoost classifier was developed to predict disease progression using these findings. The models performance was evaluated using respiratory function changes and survival analysis in cross-validation and external test cohorts. FindingsIn the internal cross-validation (135 cases), the model predicted 105 cases without disease progression and 30 with disease progression. The annual {Delta}%FVC was -1.293 in the non-progressive group versus -5.198 in the progressive group, outperforming most pathologists diagnoses. In the external test cohort (48 cases), the model predicted 38 non-progressive and 10 progressive cases. Survival analysis demonstrated significantly shorter survival times in the progressive group (p=0.034). InterpretationCRAI provides a comprehensive, interpretable approach to analyzing TBLC specimens, offering potential for standardizing ILD diagnosis and predicting disease progression. The model could facilitate early identification of progressive cases and guide personalized therapeutic interventions. FundingNew Energy and Industrial Technology Development Organization (NEDO) and Japanese Ministry of Health, Labor, and Welfare.

Three-dimensional pulp chamber volume quantification in first molars using CBCT: Implications for machine learning-assisted age estimation

Ding, Y., Zhong, T., He, Y., Wang, W., Zhang, S., Zhang, X., Shi, W., jin, b.

medrxiv logopreprintAug 8 2025
Accurate adult age estimation represents a critical component of forensic individual identification. However, traditional methods relying on skeletal developmental characteristics are susceptible to preservation status and developmental variation. Teeth, owing to their exceptional taphonomic resistance and minimal postmortem alteration, emerge as premier biological samples. Utilizing the high-resolution capabilities of Cone Beam Computed Tomography (CBCT), this study retrospectively analyzed 1,857 right first molars obtained from Han Chinese adults in Sichuan Province (883 males, 974 females; aged 18-65 years). Pulp chamber volume (PCV) was measured using semi-automatic segmentation in Mimics software (v21.0). Statistically significant differences in PCV were observed based on sex and tooth position (maxillary vs. mandibular). Significant negative correlations existed between PCV and age (r = -0.86 to -0.81). The strongest correlation (r = -0.88) was identified in female maxillary first molars. Eleven curvilinear regression models and six machine learning models (Linear Regression, Lasso Regression, Neural Network, Random Forest, Gradient Boosting, and XGBoost) were developed. Among the curvilinear regression models, the cubic model demonstrated the best performance, with the female maxillary-specific model achieving a mean absolute error (MAE) of 4.95 years. Machine learning models demonstrated superior accuracy. Specifically, the sex- and tooth position-specific XGBoost model for female maxillary first molars achieved an MAE of 3.14 years (R{superscript 2} = 0.87). This represents a significant 36.5% reduction in error compared to the optimal cubic regression model. These findings demonstrate that PCV measurements in first molars, combined with machine learning algorithms (specifically XGBoost), effectively overcome the limitations of traditional methods, providing a highly precise and reproducible approach for forensic age estimation.

Vision-Language Model-Based Semantic-Guided Imaging Biomarker for Lung Nodule Malignancy Prediction.

Zhuang L, Tabatabaei SMH, Salehi-Rad R, Tran LM, Aberle DR, Prosper AE, Hsu W

pubmed logopapersAug 8 2025
Machine learning models have utilized semantic features, deep features, or both to assess lung nodule malignancy. However, their reliance on manual annotation during inference, limited interpretability, and sensitivity to imaging variations hinder their application in real-world clinical settings. Thus, this research aims to integrate semantic features derived from radiologists' assessments of nodules, guiding the model to learn clinically relevant, robust, and explainable imaging features for predicting lung cancer. We obtained 938 low-dose CT scans from the National Lung Screening Trial (NLST) with 1,246 nodules and semantic features. Additionally, the Lung Image Database Consortium dataset contains 1,018 CT scans, with 2,625 lesions annotated for nodule characteristics. Three external datasets were obtained from UCLA Health, the LUNGx Challenge, and the Duke Lung Cancer Screening. We fine-tuned a pretrained Contrastive Language-Image Pretraining (CLIP) model with a parameter-efficient fine-tuning approach to align imaging and semantic text features and predict the one-year lung cancer diagnosis. Our model outperformed state-of-the-art (SOTA) models in the NLST test set with an AUROC of 0.901 and AUPRC of 0.776. It also showed robust results in external datasets. Using CLIP, we also obtained predictions on semantic features through zero-shot inference, such as nodule margin (AUROC: 0.812), nodule consistency (0.812), and pleural attachment (0.840). Our approach surpasses the SOTA models in predicting lung cancer across datasets collected from diverse clinical settings, providing explainable outputs, aiding clinicians in comprehending the underlying meaning of model predictions. This approach also prevents the model from learning shortcuts and generalizes across clinical settings. The code is available at https://github.com/luotingzhuang/CLIP_nodule.

impuTMAE: Multi-modal Transformer with Masked Pre-training for Missing Modalities Imputation in Cancer Survival Prediction

Maria Boyko, Aleksandra Beliaeva, Dmitriy Kornilov, Alexander Bernstein, Maxim Sharaev

arxiv logopreprintAug 8 2025
The use of diverse modalities, such as omics, medical images, and clinical data can not only improve the performance of prognostic models but also deepen an understanding of disease mechanisms and facilitate the development of novel treatment approaches. However, medical data are complex, often incomplete, and contains missing modalities, making effective handling its crucial for training multimodal models. We introduce impuTMAE, a novel transformer-based end-to-end approach with an efficient multimodal pre-training strategy. It learns inter- and intra-modal interactions while simultaneously imputing missing modalities by reconstructing masked patches. Our model is pre-trained on heterogeneous, incomplete data and fine-tuned for glioma survival prediction using TCGA-GBM/LGG and BraTS datasets, integrating five modalities: genetic (DNAm, RNA-seq), imaging (MRI, WSI), and clinical data. By addressing missing data during pre-training and enabling efficient resource utilization, impuTMAE surpasses prior multimodal approaches, achieving state-of-the-art performance in glioma patient survival prediction. Our code is available at https://github.com/maryjis/mtcp

Multivariate Fields of Experts

Stanislas Ducotterd, Michael Unser

arxiv logopreprintAug 8 2025
We introduce the multivariate fields of experts, a new framework for the learning of image priors. Our model generalizes existing fields of experts methods by incorporating multivariate potential functions constructed via Moreau envelopes of the $\ell_\infty$-norm. We demonstrate the effectiveness of our proposal across a range of inverse problems that include image denoising, deblurring, compressed-sensing magnetic-resonance imaging, and computed tomography. The proposed approach outperforms comparable univariate models and achieves performance close to that of deep-learning-based regularizers while being significantly faster, requiring fewer parameters, and being trained on substantially fewer data. In addition, our model retains a relatively high level of interpretability due to its structured design.
Page 57 of 1421420 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.