Sort by:
Page 54 of 94940 results

Mono-Modalizing Extremely Heterogeneous Multi-Modal Medical Image Registration

Kyobin Choo, Hyunkyung Han, Jinyeong Kim, Chanyong Yoon, Seong Jae Hwang

arxiv logopreprintJun 18 2025
In clinical practice, imaging modalities with functional characteristics, such as positron emission tomography (PET) and fractional anisotropy (FA), are often aligned with a structural reference (e.g., MRI, CT) for accurate interpretation or group analysis, necessitating multi-modal deformable image registration (DIR). However, due to the extreme heterogeneity of these modalities compared to standard structural scans, conventional unsupervised DIR methods struggle to learn reliable spatial mappings and often distort images. We find that the similarity metrics guiding these models fail to capture alignment between highly disparate modalities. To address this, we propose M2M-Reg (Multi-to-Mono Registration), a novel framework that trains multi-modal DIR models using only mono-modal similarity while preserving the established architectural paradigm for seamless integration into existing models. We also introduce GradCyCon, a regularizer that leverages M2M-Reg's cyclic training scheme to promote diffeomorphism. Furthermore, our framework naturally extends to a semi-supervised setting, integrating pre-aligned and unaligned pairs only, without requiring ground-truth transformations or segmentation masks. Experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that M2M-Reg achieves up to 2x higher DSC than prior methods for PET-MRI and FA-MRI registration, highlighting its effectiveness in handling highly heterogeneous multi-modal DIR. Our code is available at https://github.com/MICV-yonsei/M2M-Reg.

Multimodal deep learning for predicting unsuccessful recanalization in refractory large vessel occlusion.

González JD, Canals P, Rodrigo-Gisbert M, Mayol J, García-Tornel A, Ribó M

pubmed logopapersJun 18 2025
This study explores a multi-modal deep learning approach that integrates pre-intervention neuroimaging and clinical data to predict endovascular therapy (EVT) outcomes in acute ischemic stroke patients. To this end, consecutive stroke patients undergoing EVT were included in the study, including patients with suspected Intracranial Atherosclerosis-related Large Vessel Occlusion ICAD-LVO and other refractory occlusions. A retrospective, single-center cohort of patients with anterior circulation LVO who underwent EVT between 2017-2023 was analyzed. Refractory LVO (rLVO) defined class, comprised patients who presented any of the following: final angiographic stenosis > 50 %, unsuccessful recanalization (eTICI 0-2a) or required rescue treatments (angioplasty +/- stenting). Neuroimaging data included non-contrast CT and CTA volumes, automated vascular segmentation, and CT perfusion parameters. Clinical data included demographics, comorbidities and stroke severity. Imaging features were encoded using convolutional neural networks and fused with clinical data using a DAFT module. Data were split 80 % for training (with four-fold cross-validation) and 20 % for testing. Explainability methods were used to analyze the contribution of clinical variables and regions of interest in the images. The final sample comprised 599 patients; 481 for training the model (77, 16.0 % rLVO), and 118 for testing (16, 13.6 % rLVO). The best model predicting rLVO using just imaging achieved an AUC of 0.53 ± 0.02 and F1 of 0.19 ± 0.05 while the proposed multimodal model achieved an AUC of 0.70 ± 0.02 and F1 of 0.39 ± 0.02 in testing. Combining vascular segmentation, clinical variables, and imaging data improved prediction performance over single-source models. This approach offers an early alert to procedural complexity, potentially guiding more tailored, timely intervention strategies in the EVT workflow.

Federated Learning for MRI-based BrainAGE: a multicenter study on post-stroke functional outcome prediction

Vincent Roca, Marc Tommasi, Paul Andrey, Aurélien Bellet, Markus D. Schirmer, Hilde Henon, Laurent Puy, Julien Ramon, Grégory Kuchcinski, Martin Bretzner, Renaud Lopes

arxiv logopreprintJun 18 2025
$\textbf{Objective:}$ Brain-predicted age difference (BrainAGE) is a neuroimaging biomarker reflecting brain health. However, training robust BrainAGE models requires large datasets, often restricted by privacy concerns. This study evaluates the performance of federated learning (FL) for BrainAGE estimation in ischemic stroke patients treated with mechanical thrombectomy, and investigates its association with clinical phenotypes and functional outcomes. $\textbf{Methods:}$ We used FLAIR brain images from 1674 stroke patients across 16 hospital centers. We implemented standard machine learning and deep learning models for BrainAGE estimates under three data management strategies: centralized learning (pooled data), FL (local training at each site), and single-site learning. We reported prediction errors and examined associations between BrainAGE and vascular risk factors (e.g., diabetes mellitus, hypertension, smoking), as well as functional outcomes at three months post-stroke. Logistic regression evaluated BrainAGE's predictive value for these outcomes, adjusting for age, sex, vascular risk factors, stroke severity, time between MRI and arterial puncture, prior intravenous thrombolysis, and recanalisation outcome. $\textbf{Results:}$ While centralized learning yielded the most accurate predictions, FL consistently outperformed single-site models. BrainAGE was significantly higher in patients with diabetes mellitus across all models. Comparisons between patients with good and poor functional outcomes, and multivariate predictions of these outcomes showed the significance of the association between BrainAGE and post-stroke recovery. $\textbf{Conclusion:}$ FL enables accurate age predictions without data centralization. The strong association between BrainAGE, vascular risk factors, and post-stroke recovery highlights its potential for prognostic modeling in stroke care.

Sex, stature, and age estimation from skull using computed tomography images: Current status, challenges, and future perspectives.

Du Z, Navic P, Mahakkanukrauh P

pubmed logopapersJun 18 2025
The skull has long been recognized and utilized in forensic investigations, evolving from basic to complex analyses with modern technologies. Advances in radiology and technology have enhanced the ability to analyze biological identifiers-sex, stature, and age at death-from the skull. The use of computed tomography imaging helps practitioners to improve the accuracy and reliability of forensic analyses. Recently, artificial intelligence has increasingly been applied in digital forensic investigations to estimate sex, stature, and age from computed tomography images. The integration of artificial intelligence represents a significant shift in multidisciplinary collaboration, offering the potential for more accurate and reliable identification, along with advancements in academia. However, it is not yet fully developed for routine forensic work, as it remains largely in the research and development phase. Additionally, the limitations of artificial intelligence systems, such as the lack of transparency in algorithms, accountability for errors, and the potential for discrimination, must still be carefully considered. Based on scientific publications from the past decade, this article aims to provide an overview of the application of computed tomography imaging in estimating sex, stature, and age from the skull and to address issues related to future directions to further improvement.

Toward general text-guided multimodal brain MRI synthesis for diagnosis and medical image analysis.

Wang Y, Xiong H, Sun K, Bai S, Dai L, Ding Z, Liu J, Wang Q, Liu Q, Shen D

pubmed logopapersJun 17 2025
Multimodal brain magnetic resonance imaging (MRI) offers complementary insights into brain structure and function, thereby improving the diagnostic accuracy of neurological disorders and advancing brain-related research. However, the widespread applicability of MRI is substantially limited by restricted scanner accessibility and prolonged acquisition times. Here, we present TUMSyn, a text-guided universal MRI synthesis model capable of generating brain MRI specified by textual imaging metadata from routinely acquired scans. We ensure the reliability of TUMSyn by constructing a brain MRI database comprising 31,407 3D images across 7 MRI modalities from 13 worldwide centers and pre-training an MRI-specific text encoder to process text prompts effectively. Experiments on diverse datasets and physician assessments indicate that TUMSyn-generated images can be utilized along with acquired MRI scan(s) to facilitate large-scale MRI-based screening and diagnosis of multiple brain diseases, substantially reducing the time and cost of MRI in the healthcare system.

Recognition and diagnosis of Alzheimer's Disease using T1-weighted magnetic resonance imaging via integrating CNN and Swin vision transformer.

Wang Y, Sheng H, Wang X

pubmed logopapersJun 17 2025
Alzheimer's disease is a debilitating neurological disorder that requires accurate diagnosis for the most effective therapy and care. This article presents a new vision transformer model specifically created to evaluate magnetic resonance imaging data from the Alzheimer's Disease Neuroimaging Initiative dataset in order to categorize cases of Alzheimer's disease. Contrary to models that rely on convolutional neural networks, the vision transformer has the ability to capture large relationships between far-apart pixels in the images. The suggested architecture has shown exceptional outcomes, as its precision has emphasized its capacity to detect and distinguish significant characteristics from MRI scans, hence enabling the precise classification of Alzheimer's disease subtypes and various stages. The model utilizes both the elements from convolutional neural network and vision transformer models to extract both local and global visual patterns, facilitating the accurate categorization of various Alzheimer's disease classifications. We specifically focus on the term 'dementia in patients with Alzheimer's disease' to describe individuals who have progressed to the dementia stage as a result of AD, distinguishing them from those in earlier stages of the disease. Precise categorization of Alzheimer's disease has significant therapeutic importance, as it enables timely identification, tailored treatment strategies, disease monitoring, and prognostic assessment. The stated high accuracy indicates that the suggested vision transformer model has the capacity to assist healthcare providers and researchers in generating well-informed and precise evaluations of individuals with Alzheimer's disease.

DiffM<sup>4</sup>RI: A Latent Diffusion Model with Modality Inpainting for Synthesizing Missing Modalities in MRI Analysis.

Ye W, Guo Z, Ren Y, Tian Y, Shen Y, Chen Z, He J, Ke J, Shen Y

pubmed logopapersJun 17 2025
Foundation Models (FMs) have shown great promise for multimodal medical image analysis such as Magnetic Resonance Imaging (MRI). However, certain MRI sequences may be unavailable due to various constraints, such as limited scanning time, patient discomfort, or scanner limitations. The absence of certain modalities can hinder the performance of FMs in clinical applications, making effective missing modality imputation crucial for ensuring their applicability. Previous approaches, including generative adversarial networks (GANs), have been employed to synthesize missing modalities in either a one-to-one or many-to-one manner. However, these methods have limitations, as they require training a new model for different missing scenarios and are prone to mode collapse, generating limited diversity in the synthesized images. To address these challenges, we propose DiffM<sup>4</sup>RI, a diffusion model for many-to-many missing modality imputation in MRI. DiffM<sup>4</sup>RI innovatively formulates the missing modality imputation as a modality-level inpainting task, enabling it to handle arbitrary missing modality situations without the need for training multiple networks. Experiments on the BraTs datasets demonstrate DiffM<sup>4</sup>RI can achieve an average SSIM improvement of 0.15 over MustGAN, 0.1 over SynDiff, and 0.02 over VQ-VAE-2. These results highlight the potential of DiffM<sup>4</sup>RI in enhancing the reliability of FMs in clinical applications. The code is available at https://github.com/27yw/DiffM4RI.

DGG-XNet: A Hybrid Deep Learning Framework for Multi-Class Brain Disease Classification with Explainable AI

Sumshun Nahar Eity, Mahin Montasir Afif, Tanisha Fairooz, Md. Mortuza Ahmmed, Md Saef Ullah Miah

arxiv logopreprintJun 17 2025
Accurate diagnosis of brain disorders such as Alzheimer's disease and brain tumors remains a critical challenge in medical imaging. Conventional methods based on manual MRI analysis are often inefficient and error-prone. To address this, we propose DGG-XNet, a hybrid deep learning model integrating VGG16 and DenseNet121 to enhance feature extraction and classification. DenseNet121 promotes feature reuse and efficient gradient flow through dense connectivity, while VGG16 contributes strong hierarchical spatial representations. Their fusion enables robust multiclass classification of neurological conditions. Grad-CAM is applied to visualize salient regions, enhancing model transparency. Trained on a combined dataset from BraTS 2021 and Kaggle, DGG-XNet achieved a test accuracy of 91.33\%, with precision, recall, and F1-score all exceeding 91\%. These results highlight DGG-XNet's potential as an effective and interpretable tool for computer-aided diagnosis (CAD) of neurodegenerative and oncological brain disorders.

NeuroMoE: A Transformer-Based Mixture-of-Experts Framework for Multi-Modal Neurological Disorder Classification

Wajih Hassan Raza, Aamir Bader Shah, Yu Wen, Yidan Shen, Juan Diego Martinez Lemus, Mya Caryn Schiess, Timothy Michael Ellmore, Renjie Hu, Xin Fu

arxiv logopreprintJun 17 2025
The integration of multi-modal Magnetic Resonance Imaging (MRI) and clinical data holds great promise for enhancing the diagnosis of neurological disorders (NDs) in real-world clinical settings. Deep Learning (DL) has recently emerged as a powerful tool for extracting meaningful patterns from medical data to aid in diagnosis. However, existing DL approaches struggle to effectively leverage multi-modal MRI and clinical data, leading to suboptimal performance. To address this challenge, we utilize a unique, proprietary multi-modal clinical dataset curated for ND research. Based on this dataset, we propose a novel transformer-based Mixture-of-Experts (MoE) framework for ND classification, leveraging multiple MRI modalities-anatomical (aMRI), Diffusion Tensor Imaging (DTI), and functional (fMRI)-alongside clinical assessments. Our framework employs transformer encoders to capture spatial relationships within volumetric MRI data while utilizing modality-specific experts for targeted feature extraction. A gating mechanism with adaptive fusion dynamically integrates expert outputs, ensuring optimal predictive performance. Comprehensive experiments and comparisons with multiple baselines demonstrate that our multi-modal approach significantly enhances diagnostic accuracy, particularly in distinguishing overlapping disease states. Our framework achieves a validation accuracy of 82.47\%, outperforming baseline methods by over 10\%, highlighting its potential to improve ND diagnosis by applying multi-modal learning to real-world clinical data.

BRISC: Annotated Dataset for Brain Tumor Segmentation and Classification with Swin-HAFNet

Amirreza Fateh, Yasin Rezvani, Sara Moayedi, Sadjad Rezvani, Fatemeh Fateh, Mansoor Fateh

arxiv logopreprintJun 17 2025
Accurate segmentation and classification of brain tumors from Magnetic Resonance Imaging (MRI) remain key challenges in medical image analysis, largely due to the lack of high-quality, balanced, and diverse datasets. In this work, we present a new curated MRI dataset designed specifically for brain tumor segmentation and classification tasks. The dataset comprises 6,000 contrast-enhanced T1-weighted MRI scans annotated by certified radiologists and physicians, spanning three major tumor types-glioma, meningioma, and pituitary-as well as non-tumorous cases. Each sample includes high-resolution labels and is categorized across axial, sagittal, and coronal imaging planes to facilitate robust model development and cross-view generalization. To demonstrate the utility of the dataset, we propose a transformer-based segmentation model and benchmark it against established baselines. Our method achieves the highest weighted mean Intersection-over-Union (IoU) of 82.3%, with improvements observed across all tumor categories. Importantly, this study serves primarily as an introduction to the dataset, establishing foundational benchmarks for future research. We envision this dataset as a valuable resource for advancing machine learning applications in neuro-oncology, supporting both academic research and clinical decision-support development. datasetlink: https://www.kaggle.com/datasets/briscdataset/brisc2025/
Page 54 of 94940 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.