Sort by:
Page 53 of 63622 results

Does Machine Learning Prediction of Magnetic Resonance Imaging PI-RADS Correlate with Target Prostate Biopsy Results?

Arafa MA, Farhat KH, Lotfy N, Khan FK, Mokhtar A, Althunayan AM, Al-Taweel W, Al-Khateeb SS, Azhari S, Rabah DM

pubmed logopapersMay 26 2025
This study aimed to predict and classify MRI PI-RADs scores using different machine learning algorithms and to detect the concordance of PI-RADs scoring with the outcome target of prostate biopsy. Machine learning (ML) algorithms were used to develop best-fitting models for the prediction and classification of MRI PI-RAD. The Random Forest and Extra Trees models achieved the best performance compared to the other methods. The accuracy of both models was 91.95%. The AUC was 0.9329 for the Random Forest model and 0.9404 for the Extra Trees model. PSA level, PSA density, and diameter of the largest lesion were the most important features for the importance of outcome classification. ML prediction enhanced the PI-RAD classification, where clinically significant prostate cancer (csPCa) cases increased from 0% to 1.9% in the low-risk PI-RAD class, this showed that the model identified some previously missed cases. Predictive machine learning models showed an excellent ability to predict MRI Pi-RAD scores and discriminate between low- and high-risk scores. However, caution should be exercised, as a high percentage of negative biopsy cases were assigned Pi-RAD 4 and Pi-RAD 5 scores. ML integration may enhance PI-RAD's utility by reducing unnecessary biopsies in low-risk patients (via better csPCa detection) and refining the high-risk categorization. Combining such PI-RAD scores with significant parameters, such as PSA density, lesion diameter, number of lesions, and age, in decision curve analysis and utility paradigms would assist physicians' clinical decisions.

Differentiating Benign and Hepatocellular Carcinoma Cirrhotic Nodules: Radiomics Analysis of Water Restriction Patterns with Diffusion MRI.

Arian A, Fotouhi M, Samadi Khoshe Mehr F, Setayeshpour B, Delazar S, Nahvijou A, Nasiri-Toosi M

pubmed logopapersMay 26 2025
Current study aimed to investigate radiomics features derived from two-center diffusion-MRI to differentiate benign and hepatocellular carcinoma (HCC) liver nodules. A total of 328 patients with 517 LI-RADS 2-5 nodules were included. MR images were retrospectively collected from 3 T and 1.5 T MRI vendors. Lesions were categorized into 242 benign and 275 HCC based on follow-up imaging for LR-2,3 and pathology results for LR4,5 nodules, and randomly divided into training (80%) and test (20%) sets. Preprocessing included resampling and normalization. Radiomics features were extracted from lesion volume-of-interest (VOI) on diffusion Images. Scanner variability was corrected using ComBat harmonization method followed by High-correlation filter, PCA filter, and LASSO to select important features. Best classifier model was selected by 10-fold cross-validation, and accuracy was assessed on the test dataset. 1,434 features were extracted, and subsequent classifiers were constructed based on the 16 most important selected features. Notably, support-vector machine (SVM) demonstrated better performance in the test dataset in distinguishing between benign and HCC nodules, achieving an accuracy of 0.92, sensitivity of 0.94, and specificity of 0.86. Utilizing diffusion-MRI radiomics, our study highlights the performance of SVM, trained on lesions' diffusivity characteristics, in distinguishing benign and HCC nodules, ensuring clinical potential. It is suggested that further evaluations be conducted on multi-center datasets to address harmonization challenges. Integration of diffusion radiomics, for monitoring water restriction patterns as tumor histopathological index, with machine learning models demonstrates potential for achieving a reliable noninvasive method to improve the current diagnosis criteria.

The extent of Skeletal muscle wasting in prolonged critical illness and its association with survival: insights from a retrospective single-center study.

Kolck J, Hosse C, Fehrenbach U, Beetz NL, Auer TA, Pille C, Geisel D

pubmed logopapersMay 26 2025
Muscle wasting in critically ill patients, particularly those with prolonged hospitalization, poses a significant challenge to recovery and long-term outcomes. The aim of this study was to characterize long-term muscle wasting trajectories in ICU patients with acute respiratory distress syndrome (ARDS) due to COVID-19 and acute pancreatitis (AP), to evaluate correlations between muscle wasting and patient outcomes, and to identify clinically feasible thresholds that have the potential to enhance patient care strategies. A collective of 154 ICU patients (100 AP and 54 COVID-19 ARDS) with a minimum ICU stay of 10 days and at least three abdominal CT scans were retrospectively analyzed. AI-driven segmentation of CT scans quantified changes in psoas muscle area (PMA). A mixed model analysis was used to assess the correlation between mortality and muscle wasting, Cox regression was applied to identify potential predictors of survival. Muscle loss rates, survival thresholds and outcome correlations were assessed using Kaplan-Meier and receiver operating characteristic (ROC) analyses. Muscle loss in ICU patients was most pronounced in the first two weeks, peaking at -2.42% and - 2.39% psoas muscle area (PMA) loss per day in weeks 1 and 2, respectively, followed by a progressive decline. The median total PMA loss was 48.3%, with significantly greater losses in non-survivors. Mixed model analysis confirmed correlation of muscle wasting with mortality. Cox regression identified visceral adipose tissue (VAT), sequential organ failure assessment (SOFA) score and muscle wasting as significant risk factors, while increased skeletal muscle area (SMA) was protective. ROC and Kaplan-Meier analyses showed strong correlations between PMA loss thresholds and survival, with daily loss > 4% predicting the worst survival (39.7%). To our knowledge, This is the first study to highlight the substantial progression of muscle wasting in prolonged hospitalized ICU patients. The mortality-related thresholds for muscle wasting rates identified in this study may provide a basis for clinical risk stratification. Future research should validate these findings in larger cohorts and explore strategies to mitigate muscle loss. Not applicable.

[Clinical value of medical imaging artificial intelligence in the diagnosis and treatment of peritoneal metastasis in gastrointestinal cancers].

Fang MJ, Dong D, Tian J

pubmed logopapersMay 25 2025
Peritoneal metastasis is a key factor in the poor prognosis of advanced gastrointestinal cancer patients. Traditional radiological diagnostic faces challenges such as insufficient sensitivity. Through technologies like radiomics and deep learning, artificial intelligence can deeply analyze the tumor heterogeneity and microenvironment features in medical images, revealing markers of peritoneal metastasis and constructing high-precision predictive models. These technologies have demonstrated advantages in tasks such as predicting peritoneal metastasis, assessing the risk of peritoneal recurrence, and identifying small metastatic foci during surgery. This paper summarizes the representative progress and application prospects of medical imaging artificial intelligence in the diagnosis and treatment of peritoneal metastasis, and discusses potential development directions such as multimodal data fusion and large model. The integration of medical imaging artificial intelligence with clinical practice is expected to advance personalized and precision medicine in the diagnosis and treatment of peritoneal metastasis in gastrointestinal cancers.

SPARS: Self-Play Adversarial Reinforcement Learning for Segmentation of Liver Tumours

Catalina Tan, Yipeng Hu, Shaheer U. Saeed

arxiv logopreprintMay 25 2025
Accurate tumour segmentation is vital for various targeted diagnostic and therapeutic procedures for cancer, e.g., planning biopsies or tumour ablations. Manual delineation is extremely labour-intensive, requiring substantial expert time. Fully-supervised machine learning models aim to automate such localisation tasks, but require a large number of costly and often subjective 3D voxel-level labels for training. The high-variance and subjectivity in such labels impacts model generalisability, even when large datasets are available. Histopathology labels may offer more objective labels but the infeasibility of acquiring pixel-level annotations to develop tumour localisation methods based on histology remains challenging in-vivo. In this work, we propose a novel weakly-supervised semantic segmentation framework called SPARS (Self-Play Adversarial Reinforcement Learning for Segmentation), which utilises an object presence classifier, trained on a small number of image-level binary cancer presence labels, to localise cancerous regions on CT scans. Such binary labels of patient-level cancer presence can be sourced more feasibly from biopsies and histopathology reports, enabling a more objective cancer localisation on medical images. Evaluating with real patient data, we observed that SPARS yielded a mean dice score of $77.3 \pm 9.4$, which outperformed other weakly-supervised methods by large margins. This performance was comparable with recent fully-supervised methods that require voxel-level annotations. Our results demonstrate the potential of using SPARS to reduce the need for extensive human-annotated labels to detect cancer in real-world healthcare settings.

A novel network architecture for post-applicator placement CT auto-contouring in cervical cancer HDR brachytherapy.

Lei Y, Chao M, Yang K, Gupta V, Yoshida EJ, Wang T, Yang X, Liu T

pubmed logopapersMay 25 2025
High-dose-rate brachytherapy (HDR-BT) is an integral part of treatment for locally advanced cervical cancer, requiring accurate segmentation of the high-risk clinical target volume (HR-CTV) and organs at risk (OARs) on post-applicator CT (pCT) for precise and safe dose delivery. Manual contouring, however, is time-consuming and highly variable, with challenges heightened in cervical HDR-BT due to complex anatomy and low tissue contrast. An effective auto-contouring solution could significantly enhance efficiency, consistency, and accuracy in cervical HDR-BT planning. To develop a machine learning-based approach that improves the accuracy and efficiency of HR-CTV and OAR segmentation on pCT images for cervical HDR-BT. The proposed method employs two sequential deep learning models to segment target and OARs from planning CT data. The intuitive model, a U-Net, initially segments simpler structures such as the bladder and HR-CTV, utilizing shallow features and iodine contrast agents. Building on this, the sophisticated model targets complex structures like the sigmoid, rectum, and bowel, addressing challenges from low contrast, anatomical proximity, and imaging artifacts. This model incorporates spatial information from the intuitive model and uses total variation regularization to improve segmentation smoothness by applying a penalty to changes in gradient. This dual-model approach improves accuracy and consistency in segmenting high-risk clinical target volumes and organs at risk in cervical HDR-BT. To validate the proposed method, 32 cervical cancer patients treated with tandem and ovoid (T&O) HDR brachytherapy (3-5 fractions, 115 CT images) were retrospectively selected. The method's performance was assessed using four-fold cross-validation, comparing segmentation results to manual contours across five metrics: Dice similarity coefficient (DSC), 95% Hausdorff distance (HD<sub>95</sub>), mean surface distance (MSD), center-of-mass distance (CMD), and volume difference (VD). Dosimetric evaluations included D90 for HR-CTV and D2cc for OARs. The proposed method demonstrates high segmentation accuracy for HR-CTV, bladder, and rectum, achieving DSC values of 0.79 ± 0.06, 0.83 ± 0.10, and 0.76 ± 0.15, MSD values of 1.92 ± 0.77 mm, 2.24 ± 1.20 mm, and 4.18 ± 3.74 mm, and absolute VD values of 5.34 ± 4.85 cc, 17.16 ± 17.38 cc, and 18.54 ± 16.83 cc, respectively. Despite challenges in bowel and sigmoid segmentation due to poor soft tissue contrast in CT and variability in manual contouring (ground truth volumes of 128.48 ± 95.9 cc and 51.87 ± 40.67 cc), the method significantly outperforms two state-of-the-art methods on DSC, MSD, and CMD metrics (p-value < 0.05). For HR-CTV, the mean absolute D90 difference was 0.42 ± 1.17 Gy (p-value > 0.05), less than 5% of the prescription dose. Over 75% of cases showed changes within ± 0.5 Gy, and fewer than 10% exceeded ± 1 Gy. The mean and variation in structure volume and D2cc parameters between manual and segmented contours for OARs showed no significant differences (p-value > 0.05), with mean absolute D2cc differences within 0.5 Gy, except for the bladder, which exhibited higher variability (0.97 Gy). Our innovative auto-contouring method showed promising results in segmenting HR-CTV and OARs from pCT, potentially enhancing the efficiency of HDR BT cervical treatment planning. Further validation and clinical implementation are required to fully realize its clinical benefits.

Quantitative image quality metrics enable resource-efficient quality control of clinically applied AI-based reconstructions in MRI.

White OA, Shur J, Castagnoli F, Charles-Edwards G, Whitcher B, Collins DJ, Cashmore MTD, Hall MG, Thomas SA, Thompson A, Harrison CA, Hopkinson G, Koh DM, Winfield JM

pubmed logopapersMay 24 2025
AI-based MRI reconstruction techniques improve efficiency by reducing acquisition times whilst maintaining or improving image quality. Recent recommendations from professional bodies suggest centres should perform quality assessments on AI tools. However, monitoring long-term performance presents challenges, due to model drift or system updates. Radiologist-based assessments are resource-intensive and may be subjective, highlighting the need for efficient quality control (QC) measures. This study explores using image quality metrics (IQMs) to assess AI-based reconstructions. 58 patients undergoing standard-of-care rectal MRI were imaged using AI-based and conventional T2-weighted sequences. Paired and unpaired IQMs were calculated. Sensitivity of IQMs to detect retrospective perturbations in AI-based reconstructions was assessed using control charts, and statistical comparisons between the four MR systems in the evaluation were performed. Two radiologists evaluated the image quality of the perturbed images, giving an indication of their clinical relevance. Paired IQMs demonstrated sensitivity to changes in AI-reconstruction settings, identifying deviations outside ± 2 standard deviations of the reference dataset. Unpaired metrics showed less sensitivity. Paired IQMs showed no difference in performance between 1.5 T and 3 T systems (p > 0.99), whilst minor but significant (p < 0.0379) differences were noted for unpaired IQMs. IQMs are effective for QC of AI-based MR reconstructions, offering resource-efficient alternatives to repeated radiologist evaluations. Future work should expand this to other imaging applications and assess additional measures.

Preoperative risk assessment of invasive endometrial cancer using MRI-based radiomics: a systematic review and meta-analysis.

Gao Y, Liang F, Tian X, Zhang G, Zhang H

pubmed logopapersMay 24 2025
Image-derived machine learning (ML) is a robust and growing field in diagnostic imaging systems for both clinicians and radiologists. Accurate preoperative radiological evaluation of the invasive ability of endometrial cancer (EC) can increase the degree of clinical benefit. The present study aimed to investigate the diagnostic performance of magnetic resonance imaging (MRI)-derived artificial intelligence for accurate preoperative assessment of the invasive risk. The PubMed, Embase, Cochrane Library and Web of Science databases were searched, and pertinent English-language papers were collected. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), and positive and negative likelihood ratios (PLR and NLR, respectively) of all the papers were calculated using Stata software. The results were plotted on a summary receiver operating characteristic (SROC) curve, publication bias and threshold effects were evaluated, and meta-regression and subgroup analyses were conducted to explore the possible causes of intratumoral heterogeneity. MRI-based radiomics revealed pooled sensitivity (SEN) and specificity (SPE) values of 0.85 and 0.82 for the prediction of high-grade EC; 0.80 and 0.85 for deep myometrial invasion (DMI); 0.85 and 0.73 for lymphovascular space invasion (LVSI); 0.79 and 0.85 for microsatellite instability (MSI); and 0.90 and 0.72 for lymph node metastasis (LNM), respectively. For LVSI prediction and high-grade histological analysis, meta-regression revealed that the image segmentation and MRI-based radiomics modeling contributed to heterogeneity (p = 0.003 and 0.04). Through a systematic review and meta-analysis of the reported literature, preoperative MRI-derived ML could help clinicians accurately evaluate EC risk factors, potentially guiding individual treatment thereafter.

Evaluation of a deep-learning segmentation model for patients with colorectal cancer liver metastases (COALA) in the radiological workflow.

Zeeuw M, Bereska J, Strampel M, Wagenaar L, Janssen B, Marquering H, Kemna R, van Waesberghe JH, van den Bergh J, Nota I, Moos S, Nio Y, Kop M, Kist J, Struik F, Wesdorp N, Nelissen J, Rus K, de Sitter A, Stoker J, Huiskens J, Verpalen I, Kazemier G

pubmed logopapersMay 23 2025
For patients with colorectal liver metastases (CRLM), total tumor volume (TTV) is prognostic. A deep-learning segmentation model for CRLM to assess TTV called COlorectal cAncer Liver metastases Assessment (COALA) has been developed. This study evaluated COALA's performance and practical utility in the radiological picture archiving and communication system (PACS). A secondary aim was to provide lessons for future researchers on the implementation of artificial intelligence (AI) models. Patients discussed between January and December 2023 in a multidisciplinary meeting for CRLM were included. In those patients, CRLM was automatically segmented in portal-venous phase CT scans by COALA and integrated with PACS. Eight expert abdominal radiologists completed a questionnaire addressing segmentation accuracy and PACS integration. They were also asked to write down general remarks. In total, 57 patients were evaluated. Of those patients, 112 contrast-enhanced portal-venous phase CT scans were analyzed. Of eight radiologists, six (75%) evaluated the model as user-friendly in their radiological workflow. Areas of improvement of the COALA model were the segmentation of small lesions, heterogeneous lesions, and lesions at the border of the liver with involvement of the diaphragm or heart. Key lessons for implementation were a multidisciplinary approach, a robust method prior to model development and organizing evaluation sessions with end-users early in the development phase. This study demonstrates that the deep-learning segmentation model for patients with CRLM (COALA) is user-friendly in the radiologist's PACS. Future researchers striving for implementation should have a multidisciplinary approach, propose a robust methodology and involve end-users prior to model development. Many segmentation models are being developed, but none of those models are evaluated in the (radiological) workflow or clinically implemented. Our model is implemented in the radiological work system, providing valuable lessons for researchers to achieve clinical implementation. Developed segmentation models should be implemented in the radiological workflow. Our implemented segmentation model provides valuable lessons for future researchers. If implemented in clinical practice, our model could allow for objective radiological evaluation.

A Foundation Model Framework for Multi-View MRI Classification of Extramural Vascular Invasion and Mesorectal Fascia Invasion in Rectal Cancer

Yumeng Zhang, Zohaib Salahuddin, Danial Khan, Shruti Atul Mali, Henry C. Woodruff, Sina Amirrajab, Eduardo Ibor-Crespo, Ana Jimenez-Pastor, Luis Marti-Bonmati, Philippe Lambin

arxiv logopreprintMay 23 2025
Background: Accurate MRI-based identification of extramural vascular invasion (EVI) and mesorectal fascia invasion (MFI) is pivotal for risk-stratified management of rectal cancer, yet visual assessment is subjective and vulnerable to inter-institutional variability. Purpose: To develop and externally evaluate a multicenter, foundation-model-driven framework that automatically classifies EVI and MFI on axial and sagittal T2-weighted MRI. Methods: This retrospective study used 331 pre-treatment rectal cancer MRI examinations from three European hospitals. After TotalSegmentator-guided rectal patch extraction, a self-supervised frequency-domain harmonization pipeline was trained to minimize scanner-related contrast shifts. Four classifiers were compared: ResNet50, SeResNet, the universal biomedical pretrained transformer (UMedPT) with a lightweight MLP head, and a logistic-regression variant using frozen UMedPT features (UMedPT_LR). Results: UMedPT_LR achieved the best EVI detection when axial and sagittal features were fused (AUC = 0.82; sensitivity = 0.75; F1 score = 0.73), surpassing the Chaimeleon Grand-Challenge winner (AUC = 0.74). The highest MFI performance was attained by UMedPT on axial harmonized images (AUC = 0.77), surpassing the Chaimeleon Grand-Challenge winner (AUC = 0.75). Frequency-domain harmonization improved MFI classification but variably affected EVI performance. Conventional CNNs (ResNet50, SeResNet) underperformed, especially in F1 score and balanced accuracy. Conclusion: These findings demonstrate that combining foundation model features, harmonization, and multi-view fusion significantly enhances diagnostic performance in rectal MRI.
Page 53 of 63622 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.