Sort by:
Page 5 of 45449 results

Enhancing Radiographic Disease Detection with MetaCheX, a Context-Aware Multimodal Model

Nathan He, Cody Chen

arxiv logopreprintSep 15 2025
Existing deep learning models for chest radiology often neglect patient metadata, limiting diagnostic accuracy and fairness. To bridge this gap, we introduce MetaCheX, a novel multimodal framework that integrates chest X-ray images with structured patient metadata to replicate clinical decision-making. Our approach combines a convolutional neural network (CNN) backbone with metadata processed by a multilayer perceptron through a shared classifier. Evaluated on the CheXpert Plus dataset, MetaCheX consistently outperformed radiograph-only baseline models across multiple CNN architectures. By integrating metadata, the overall diagnostic accuracy was significantly improved, measured by an increase in AUROC. The results of this study demonstrate that metadata reduces algorithmic bias and enhances model generalizability across diverse patient populations. MetaCheX advances clinical artificial intelligence toward robust, context-aware radiographic disease detection.

AI and Healthcare Disparities: Lessons from a Cautionary Tale in Knee Radiology.

Hull G

pubmed logopapersSep 14 2025
Enthusiasm about the use of artificial intelligence (AI) in medicine has been tempered by concern that algorithmic systems can be unfairly biased against racially minoritized populations. This article uses work on racial disparities in knee osteoarthritis diagnoses to underline that achieving justice in the use of AI in medical imaging requires attention to the entire sociotechnical system within which it operates, rather than isolated properties of algorithms. Using AI to make current diagnostic procedures more efficient risks entrenching existing disparities; a recent algorithm points to some of the problems in current procedures while highlighting systemic normative issues that need to be addressed while designing further AI systems. The article thus contributes to a literature arguing that bias and fairness issues in AI be considered as aspects of structural inequality and injustice and to highlighting ways that AI can be helpful in making progress on these.

Sex classification from hand X-ray images in pediatric patients: How zero-shot Segment Anything Model (SAM) can improve medical image analysis.

Mollineda RA, Becerra K, Mederos B

pubmed logopapersSep 13 2025
The potential to classify sex from hand data is a valuable tool in both forensic and anthropological sciences. This work presents possibly the most comprehensive study to date of sex classification from hand X-ray images. The research methodology involves a systematic evaluation of zero-shot Segment Anything Model (SAM) in X-ray image segmentation, a novel hand mask detection algorithm based on geometric criteria leveraging human knowledge (avoiding costly retraining and prompt engineering), the comparison of multiple X-ray image representations including hand bone structure and hand silhouette, a rigorous application of deep learning models and ensemble strategies, visual explainability of decisions by aggregating attribution maps from multiple models, and the transfer of models trained from hand silhouettes to sex prediction of prehistoric handprints. Training and evaluation of deep learning models were performed using the RSNA Pediatric Bone Age dataset, a collection of hand X-ray images from pediatric patients. Results showed very high effectiveness of zero-shot SAM in segmenting X-ray images, the contribution of segmenting before classifying X-ray images, hand sex classification accuracy above 95% on test data, and predictions from ancient handprints highly consistent with previous hypotheses based on sexually dimorphic features. Attention maps highlighted the carpometacarpal joints in the female class and the radiocarpal joint in the male class as sex discriminant traits. These findings are anatomically very close to previous evidence reported under different databases, classification models and visualization techniques.

Multi-pathology Chest X-ray Classification with Rejection Mechanisms

Yehudit Aperstein, Amit Tzahar, Alon Gottlib, Tal Verber, Ravit Shagan Damti, Alexander Apartsin

arxiv logopreprintSep 12 2025
Overconfidence in deep learning models poses a significant risk in high-stakes medical imaging tasks, particularly in multi-label classification of chest X-rays, where multiple co-occurring pathologies must be detected simultaneously. This study introduces an uncertainty-aware framework for chest X-ray diagnosis based on a DenseNet-121 backbone, enhanced with two selective prediction mechanisms: entropy-based rejection and confidence interval-based rejection. Both methods enable the model to abstain from uncertain predictions, improving reliability by deferring ambiguous cases to clinical experts. A quantile-based calibration procedure is employed to tune rejection thresholds using either global or class-specific strategies. Experiments conducted on three large public datasets (PadChest, NIH ChestX-ray14, and MIMIC-CXR) demonstrate that selective rejection improves the trade-off between diagnostic accuracy and coverage, with entropy-based rejection yielding the highest average AUC across all pathologies. These results support the integration of selective prediction into AI-assisted diagnostic workflows, providing a practical step toward safer, uncertainty-aware deployment of deep learning in clinical settings.

Diagnostic performance of ChatGPT-4.0 in elbow fracture detection: A comparative study of radial head, distal humerus, and olecranon fractures.

Gültekin A, Gök Ü, Uyar AÇ, Serarslan U, Bitlis AT

pubmed logopapersSep 12 2025
Artificial intelligence has been increasingly used for radiographic fracture detection in recent years. However, its performance in the diagnosis of displaced and non-displaced fractures in specific anatomical regions has not been sufficiently investigated. This study aimed to evaluate the accuracy and sensitivity of Chat Generative Pretrained Transformer (ChatGPT-4.0) in the diagnosis of radial head, distal humerus and olecranon fractures. Anonymized radiographs, previously confirmed by an expert radiologist and orthopedist, were evaluated. Anteroposterior and lateral radiographs of 266 patients were analyzed. Each fracture site was divided into 2 groups: displaced and non-displaced. ChatGPT-4.0 asked 2 questions to indicate whether each image was broken. Responses were categorized as "fracture detected in the first question," "fracture detected in the second question," or "no fracture detected." ChatGPT-4.0 showed a significantly higher accuracy in diagnosing displaced fractures at all sites (P < .001). The highest fracture detection rate in the first question was observed for displaced distal humeral fractures (87.7%). The success rate was significantly lower in non-displaced fractures, and in the non-displaced group the highest diagnostic rate was observed in radial head fractures (25.3%). No statistically significant difference was found in pairwise sensitivity comparisons between non-displaced fractures (P > .05). ChatGPT-4.0 shows promising diagnostic performance in the detection of displaced olecranon, radial head and distal humeral fractures. However, its limited success in non-displaced fractures indicates that the model requires further training and development before clinical use. Level 3.

Towards Better Dental AI: A Multimodal Benchmark and Instruction Dataset for Panoramic X-ray Analysis

Jing Hao, Yuxuan Fan, Yanpeng Sun, Kaixin Guo, Lizhuo Lin, Jinrong Yang, Qi Yong H. Ai, Lun M. Wong, Hao Tang, Kuo Feng Hung

arxiv logopreprintSep 11 2025
Recent advances in large vision-language models (LVLMs) have demonstrated strong performance on general-purpose medical tasks. However, their effectiveness in specialized domains such as dentistry remains underexplored. In particular, panoramic X-rays, a widely used imaging modality in oral radiology, pose interpretative challenges due to dense anatomical structures and subtle pathological cues, which are not captured by existing medical benchmarks or instruction datasets. To this end, we introduce MMOral, the first large-scale multimodal instruction dataset and benchmark tailored for panoramic X-ray interpretation. MMOral consists of 20,563 annotated images paired with 1.3 million instruction-following instances across diverse task types, including attribute extraction, report generation, visual question answering, and image-grounded dialogue. In addition, we present MMOral-Bench, a comprehensive evaluation suite covering five key diagnostic dimensions in dentistry. We evaluate 64 LVLMs on MMOral-Bench and find that even the best-performing model, i.e., GPT-4o, only achieves 41.45% accuracy, revealing significant limitations of current models in this domain. To promote the progress of this specific domain, we also propose OralGPT, which conducts supervised fine-tuning (SFT) upon Qwen2.5-VL-7B with our meticulously curated MMOral instruction dataset. Remarkably, a single epoch of SFT yields substantial performance enhancements for LVLMs, e.g., OralGPT demonstrates a 24.73% improvement. Both MMOral and OralGPT hold significant potential as a critical foundation for intelligent dentistry and enable more clinically impactful multimodal AI systems in the dental field. The dataset, model, benchmark, and evaluation suite are available at https://github.com/isbrycee/OralGPT.

X-ray Diffraction Reveals Alterations in Mouse Somatosensory Cortex Following Sensory Deprivation.

Murokh S, Willerson E, Lazarev A, Lazarev P, Mourokh L, Brumberg JC

pubmed logopapersSep 10 2025
Sensory experience impacts brain development. In the mouse somatosensory cortex, sensory deprivation via whisker trimming induces reductions in the perineuronal net, the size of neuronal cell bodies, the size and orientation of dendritic arbors, the density of dendritic spines, and the level of myelination, among other effects. Using a custom-developed laboratory diffractometer, we measured the X-ray diffraction patterns of mouse brain tissue to establish a novel method for examining nanoscale brain structures. Two groups of mice were examined: a control group and one that underwent 30 days of whisker-trimming from birth an established method of sensory deprivation that affects the mouse barrel cortex (whisker sensory processing region of the primary somatosensory cortex). Mice were perfused, and primary somatosensory cortices were isolated for immunocytochemistry and X-ray diffraction imaging. X-ray images were characterized using a specially developed machine-learning approach, and the clusters that correspond to the two groups are well separated in principal components space. We obtained the perfect values for sensitivity and specificity, as well as for the receiver operator curve classifier. New machine-learning approaches allow for the first time x-ray diffraction to identify cortex that has undergone sensory deprivation without the use of stains. We hypothesize that our results are related to the alteration of different nanoscale structural components in the brains of sensory deprived mice. The effects of these nanoscale structural formations can be reflective of changes in the micro- and macro-scale structures and assemblies with the neocortex.

RepViT-CXR: A Channel Replication Strategy for Vision Transformers in Chest X-ray Tuberculosis and Pneumonia Classification

Faisal Ahmed

arxiv logopreprintSep 10 2025
Chest X-ray (CXR) imaging remains one of the most widely used diagnostic tools for detecting pulmonary diseases such as tuberculosis (TB) and pneumonia. Recent advances in deep learning, particularly Vision Transformers (ViTs), have shown strong potential for automated medical image analysis. However, most ViT architectures are pretrained on natural images and require three-channel inputs, while CXR scans are inherently grayscale. To address this gap, we propose RepViT-CXR, a channel replication strategy that adapts single-channel CXR images into a ViT-compatible format without introducing additional information loss. We evaluate RepViT-CXR on three benchmark datasets. On the TB-CXR dataset,our method achieved an accuracy of 99.9% and an AUC of 99.9%, surpassing prior state-of-the-art methods such as Topo-CXR (99.3% accuracy, 99.8% AUC). For the Pediatric Pneumonia dataset, RepViT-CXR obtained 99.0% accuracy, with 99.2% recall, 99.3% precision, and an AUC of 99.0%, outperforming strong baselines including DCNN and VGG16. On the Shenzhen TB dataset, our approach achieved 91.1% accuracy and an AUC of 91.2%, marking a performance improvement over previously reported CNN-based methods. These results demonstrate that a simple yet effective channel replication strategy allows ViTs to fully leverage their representational power on grayscale medical imaging tasks. RepViT-CXR establishes a new state of the art for TB and pneumonia detection from chest X-rays, showing strong potential for deployment in real-world clinical screening systems.

RoentMod: A Synthetic Chest X-Ray Modification Model to Identify and Correct Image Interpretation Model Shortcuts

Lauren H. Cooke, Matthias Jung, Jan M. Brendel, Nora M. Kerkovits, Borek Foldyna, Michael T. Lu, Vineet K. Raghu

arxiv logopreprintSep 10 2025
Chest radiographs (CXRs) are among the most common tests in medicine. Automated image interpretation may reduce radiologists\' workload and expand access to diagnostic expertise. Deep learning multi-task and foundation models have shown strong performance for CXR interpretation but are vulnerable to shortcut learning, where models rely on spurious and off-target correlations rather than clinically relevant features to make decisions. We introduce RoentMod, a counterfactual image editing framework that generates anatomically realistic CXRs with user-specified, synthetic pathology while preserving unrelated anatomical features of the original scan. RoentMod combines an open-source medical image generator (RoentGen) with an image-to-image modification model without requiring retraining. In reader studies with board-certified radiologists and radiology residents, RoentMod-produced images appeared realistic in 93\% of cases, correctly incorporated the specified finding in 89-99\% of cases, and preserved native anatomy comparable to real follow-up CXRs. Using RoentMod, we demonstrate that state-of-the-art multi-task and foundation models frequently exploit off-target pathology as shortcuts, limiting their specificity. Incorporating RoentMod-generated counterfactual images during training mitigated this vulnerability, improving model discrimination across multiple pathologies by 3-19\% AUC in internal validation and by 1-11\% for 5 out of 6 tested pathologies in external testing. These findings establish RoentMod as a broadly applicable tool for probing and correcting shortcut learning in medical AI. By enabling controlled counterfactual interventions, RoentMod enhances the robustness and interpretability of CXR interpretation models and provides a generalizable strategy for improving foundation models in medical imaging.

Explainable Deep Learning Framework for Classifying Mandibular Fractures on Panoramic Radiographs.

Seo H, Lee JI, Park JU, Sung IY

pubmed logopapersSep 10 2025
This study aimed to develop a deep-learning model for the automatic classification of mandibular fractures using panoramic radiographs. A pretrained convolutional neural network (CNN) was used to classify fractures based on a novel, clinically relevant classification system. The dataset comprised 800 panoramic radiographs obtained from patients with facial trauma. The model demonstrated robust classification performance across 8 fracture categories, achieving consistently high accuracy and F1 scores. Performance was evaluated using standard metrics, including accuracy, precision, recall, and F1-score. To enhance interpretability and clinical applicability, explainable AI techniques-Gradient-weighted Class Activation Mapping (Grad-CAM) and Local Interpretable Model-Agnostic Explanations (LIME)-were used to visualize the model's decision-making process. These findings suggest that the proposed deep learning framework is a reliable and efficient tool for classifying mandibular fractures on panoramic radiographs. Its application may help reduce diagnostic time and improve decision-making in maxillofacial trauma care. Further validation using larger, multi-institutional datasets is recommended to ensure generalizability.
Page 5 of 45449 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.