Sort by:
Page 5 of 1681679 results

Harnessing Generative AI for Lung Nodule Spiculation Characterization.

Wang Y, Patel C, Tchoua R, Furst J, Raicu D

pubmed logopapersJun 26 2025
Spiculation, characterized by irregular, spike-like projections from nodule margins, serves as a crucial radiological biomarker for malignancy assessment and early cancer detection. These distinctive stellate patterns strongly correlate with tumor invasiveness and are vital for accurate diagnosis and treatment planning. Traditional computer-aided diagnosis (CAD) systems are limited in their capability to capture and use these patterns given their subtlety, difficulty in quantifying them, and small datasets available to learn these patterns. To address these challenges, we propose a novel framework leveraging variational autoencoders (VAE) to discover, extract, and vary disentangled latent representations of lung nodule images. By gradually varying the latent representations of non-spiculated nodule images, we generate augmented datasets containing spiculated nodule variations that, we hypothesize, can improve the diagnostic classification of lung nodules. Using the National Institutes of Health/National Cancer Institute Lung Image Database Consortium (LIDC) dataset, our results show that incorporating these spiculated image variations into the classification pipeline significantly improves spiculation detection performance up to 7.53%. Notably, this enhancement in spiculation detection is achieved while preserving the classification performance of non-spiculated cases. This approach effectively addresses class imbalance and enhances overall classification outcomes. The gradual attenuation of spiculation characteristics demonstrates our model's ability to both capture and generate clinically relevant semantic features in an algorithmic manner. These findings suggest that the integration of semantic-based latent representations into CAD models not only enhances diagnostic accuracy but also provides insights into the underlying morphological progression of spiculated nodules, enabling more informed and clinically meaningful AI-driven support systems.

Development, deployment, and feature interpretability of a three-class prediction model for pulmonary diseases.

Cao Z, Xu G, Gao Y, Xu J, Tian F, Shi H, Yang D, Xie Z, Wang J

pubmed logopapersJun 26 2025
To develop a high-performance machine learning model for predicting and interpreting features of pulmonary diseases. This retrospective study analyzed clinical and imaging data from patients with non-small cell lung cancer (NSCLC), granulomatous inflammation, and benign tumors, collected across multiple centers from January 2015 to October 2023. Data from two hospitals in Anhui Province were split into a development set (n = 1696) and a test set (n = 424) in an 8:2 ratio, with an external validation set (n = 909) from Zhejiang Province. Features with p < 0.05 from univariate analyses were selected using the Boruta algorithm for input into Random Forest (RF) and XGBoost models. Model efficacy was assessed using receiver operating characteristic (ROC) analysis. A total of 3030 patients were included: 2269 with NSCLC, 529 with granulomatous inflammation, and 232 with benign tumors. The Obuchowski indices for RF and XGBoost in the test set were 0.7193 (95% CI: 0.6567-0.7812) and 0.8282 (95% CI: 0.7883-0.8650), respectively. In the external validation set, indices were 0.7932 (95% CI: 0.7572-0.8250) for RF and 0.8074 (95% CI: 0.7740-0.8387) for XGBoost. XGBoost achieved better accuracy in both the test (0.81) and external validation (0.79) sets. Calibration Curve and Decision Curve Analysis (DCA) showed XGBoost offered higher net clinical benefit. The XGBoost model outperforms RF in the three-class classification of lung diseases. XGBoost surpasses Random Forest in accurately classifying NSCLC, granulomatous inflammation, and benign tumors, offering superior clinical utility via multicenter data. Lung cancer classification model has broad clinical applicability. XGBoost outperforms random forests using CT imaging data. XGBoost model can be deployed on a website for clinicians.

Dose-aware denoising diffusion model for low-dose CT.

Kim S, Kim BJ, Baek J

pubmed logopapersJun 26 2025
Low-dose computed tomography (LDCT) denoising plays an important role in medical imaging for reducing the radiation dose to patients. Recently, various data-driven and diffusion-based deep learning (DL) methods have been developed and shown promising results in LDCT denoising. However, challenges remain in ensuring generalizability to different datasets and mitigating uncertainty from stochastic sampling. In this paper, we introduce a novel dose-aware diffusion model that effectively reduces CT image noise while maintaining structural fidelity and being generalizable to different dose levels.&#xD;Approach: Our approach employs a physics-based forward process with continuous timesteps, enabling flexible representation of diverse noise levels. We incorporate a computationally efficient noise calibration module in our diffusion framework that resolves misalignment between intermediate results and their corresponding timesteps. Furthermore, we present a simple yet effective method for estimating appropriate timesteps for unseen LDCT images, allowing generalization to an unknown, arbitrary dose levels.&#xD;Main Results: Both qualitative and quantitative evaluation results on Mayo Clinic datasets show that the proposed method outperforms existing denoising methods in preserving the noise texture and restoring anatomical structures. The proposed method also shows consistent results on different dose levels and an unseen dataset.&#xD;Significance: We propose a novel dose-aware diffusion model for LDCT denoising, aiming to address the generalization and uncertainty issues of existing diffusion-based DL methods. Our experimental results demonstrate the effectiveness of the proposed method across different dose levels. We expect that our approach can provide a clinically practical solution for LDCT denoising with its high structural fidelity and computational efficiency.

Deep Learning Model for Automated Segmentation of Orbital Structures in MRI Images.

Bakhshaliyeva E, Reiner LN, Chelbi M, Nawabi J, Tietze A, Scheel M, Wattjes M, Dell'Orco A, Meddeb A

pubmed logopapersJun 26 2025
Magnetic resonance imaging (MRI) is a crucial tool for visualizing orbital structures and detecting eye pathologies. However, manual segmentation of orbital anatomy is challenging due to the complexity and variability of the structures. Recent advancements in deep learning (DL), particularly convolutional neural networks (CNNs), offer promising solutions for automated segmentation in medical imaging. This study aimed to train and evaluate a U-Net-based model for the automated segmentation of key orbital structures. This retrospective study included 117 patients with various orbital pathologies who underwent orbital MRI. Manual segmentation was performed on four anatomical structures: the ocular bulb, ocular tumors, retinal detachment, and the optic nerve. Following the UNet autoconfiguration by nnUNet, we conducted a five-fold cross-validation and evaluated the model's performances using Dice Similarity Coefficient (DSC) and Relative Absolute Volume Difference (RAVD) as metrics. nnU-Net achieved high segmentation performance for the ocular bulb (mean DSC: 0.931) and the optic nerve (mean DSC: 0.820). Segmentation of ocular tumors (mean DSC: 0.788) and retinal detachment (mean DSC: 0.550) showed greater variability, with performance declining in more challenging cases. Despite these challenges, the model achieved high detection rates, with ROC AUCs of 0.90 for ocular tumors and 0.78 for retinal detachment. This study demonstrates nnU-Net's capability for accurate segmentation of orbital structures, particularly the ocular bulb and optic nerve. However, challenges remain in the segmentation of tumors and retinal detachment due to variability and artifacts. Future improvements in deep learning models and broader, more diverse datasets may enhance segmentation performance, ultimately aiding in the diagnosis and treatment of orbital pathologies.

Semi-automatic segmentation of elongated interventional instruments for online calibration of C-arm imaging system.

Chabi N, Illanes A, Beuing O, Behme D, Preim B, Saalfeld S

pubmed logopapersJun 26 2025
The C-arm biplane imaging system, designed for cerebral angiography, detects pathologies like aneurysms using dual rotating detectors for high-precision, real-time vascular imaging. However, accuracy can be affected by source-detector trajectory deviations caused by gravitational artifacts and mechanical instabilities. This study addresses calibration challenges and suggests leveraging interventional devices with radio-opaque markers to optimize C-arm geometry. We propose an online calibration method using image-specific features derived from interventional devices like guidewires and catheters (In the remainder of this paper, the term"catheter" will refer to both catheter and guidewire). The process begins with gantry-recorded data, refined through iterative nonlinear optimization. A machine learning approach detects and segments elongated devices by identifying candidates via thresholding on a weighted sum of curvature, derivative, and high-frequency indicators. An ensemble classifier segments these regions, followed by post-processing to remove false positives, integrating vessel maps, manual correction and identification markers. An interpolation step filling gaps along the catheter. Among the optimized ensemble classifiers, the one trained on the first frames achieved the best performance, with a specificity of 99.43% and precision of 86.41%. The calibration method was evaluated on three clinical datasets and four phantom angiogram pairs, reducing the mean backprojection error from 4.11 ± 2.61 to 0.15 ± 0.01 mm. Additionally, 3D accuracy analysis showed an average root mean square error of 3.47% relative to the true marker distance. This study explores using interventional tools with radio-opaque markers for C-arm self-calibration. The proposed method significantly reduces 2D backprojection error and 3D RMSE, enabling accurate 3D vascular reconstruction.

Robust Deep Learning for Myocardial Scar Segmentation in Cardiac MRI with Noisy Labels

Aida Moafi, Danial Moafi, Evgeny M. Mirkes, Gerry P. McCann, Abbas S. Alatrany, Jayanth R. Arnold, Mostafa Mehdipour Ghazi

arxiv logopreprintJun 26 2025
The accurate segmentation of myocardial scars from cardiac MRI is essential for clinical assessment and treatment planning. In this study, we propose a robust deep-learning pipeline for fully automated myocardial scar detection and segmentation by fine-tuning state-of-the-art models. The method explicitly addresses challenges of label noise from semi-automatic annotations, data heterogeneity, and class imbalance through the use of Kullback-Leibler loss and extensive data augmentation. We evaluate the model's performance on both acute and chronic cases and demonstrate its ability to produce accurate and smooth segmentations despite noisy labels. In particular, our approach outperforms state-of-the-art models like nnU-Net and shows strong generalizability in an out-of-distribution test set, highlighting its robustness across various imaging conditions and clinical tasks. These results establish a reliable foundation for automated myocardial scar quantification and support the broader clinical adoption of deep learning in cardiac imaging.

MedPrompt: LLM-CNN Fusion with Weight Routing for Medical Image Segmentation and Classification

Shadman Sobhan, Kazi Abrar Mahmud, Abduz Zami

arxiv logopreprintJun 26 2025
Current medical image analysis systems are typically task-specific, requiring separate models for classification and segmentation, and lack the flexibility to support user-defined workflows. To address these challenges, we introduce MedPrompt, a unified framework that combines a few-shot prompted Large Language Model (Llama-4-17B) for high-level task planning with a modular Convolutional Neural Network (DeepFusionLab) for low-level image processing. The LLM interprets user instructions and generates structured output to dynamically route task-specific pretrained weights. This weight routing approach avoids retraining the entire framework when adding new tasks-only task-specific weights are required, enhancing scalability and deployment. We evaluated MedPrompt across 19 public datasets, covering 12 tasks spanning 5 imaging modalities. The system achieves a 97% end-to-end correctness in interpreting and executing prompt-driven instructions, with an average inference latency of 2.5 seconds, making it suitable for near real-time applications. DeepFusionLab achieves competitive segmentation accuracy (e.g., Dice 0.9856 on lungs) and strong classification performance (F1 0.9744 on tuberculosis). Overall, MedPrompt enables scalable, prompt-driven medical imaging by combining the interpretability of LLMs with the efficiency of modular CNNs.

HyperSORT: Self-Organising Robust Training with hyper-networks

Samuel Joutard, Marijn Stollenga, Marc Balle Sanchez, Mohammad Farid Azampour, Raphael Prevost

arxiv logopreprintJun 26 2025
Medical imaging datasets often contain heterogeneous biases ranging from erroneous labels to inconsistent labeling styles. Such biases can negatively impact deep segmentation networks performance. Yet, the identification and characterization of such biases is a particularly tedious and challenging task. In this paper, we introduce HyperSORT, a framework using a hyper-network predicting UNets' parameters from latent vectors representing both the image and annotation variability. The hyper-network parameters and the latent vector collection corresponding to each data sample from the training set are jointly learned. Hence, instead of optimizing a single neural network to fit a dataset, HyperSORT learns a complex distribution of UNet parameters where low density areas can capture noise-specific patterns while larger modes robustly segment organs in differentiated but meaningful manners. We validate our method on two 3D abdominal CT public datasets: first a synthetically perturbed version of the AMOS dataset, and TotalSegmentator, a large scale dataset containing real unknown biases and errors. Our experiments show that HyperSORT creates a structured mapping of the dataset allowing the identification of relevant systematic biases and erroneous samples. Latent space clusters yield UNet parameters performing the segmentation task in accordance with the underlying learned systematic bias. The code and our analysis of the TotalSegmentator dataset are made available: https://github.com/ImFusionGmbH/HyperSORT

Lightweight Physics-Informed Zero-Shot Ultrasound Plane Wave Denoising

Hojat Asgariandehkordi, Mostafa Sharifzadeh, Hassan Rivaz

arxiv logopreprintJun 26 2025
Ultrasound Coherent Plane Wave Compounding (CPWC) enhances image contrast by combining echoes from multiple steered transmissions. While increasing the number of angles generally improves image quality, it drastically reduces the frame rate and can introduce blurring artifacts in fast-moving targets. Moreover, compounded images remain susceptible to noise, particularly when acquired with a limited number of transmissions. We propose a zero-shot denoising framework tailored for low-angle CPWC acquisitions, which enhances contrast without relying on a separate training dataset. The method divides the available transmission angles into two disjoint subsets, each used to form compound images that include higher noise levels. The new compounded images are then used to train a deep model via a self-supervised residual learning scheme, enabling it to suppress incoherent noise while preserving anatomical structures. Because angle-dependent artifacts vary between the subsets while the underlying tissue response is similar, this physics-informed pairing allows the network to learn to disentangle the inconsistent artifacts from the consistent tissue signal. Unlike supervised methods, our model requires no domain-specific fine-tuning or paired data, making it adaptable across anatomical regions and acquisition setups. The entire pipeline supports efficient training with low computational cost due to the use of a lightweight architecture, which comprises only two convolutional layers. Evaluations on simulation, phantom, and in vivo data demonstrate superior contrast enhancement and structure preservation compared to both classical and deep learning-based denoising methods.

Morphology-based radiological-histological correlation on ultra-high-resolution energy-integrating detector CT using cadaveric human lungs: nodule and airway analysis.

Hata A, Yanagawa M, Ninomiya K, Kikuchi N, Kurashige M, Nishigaki D, Doi S, Yamagata K, Yoshida Y, Ogawa R, Tokuda Y, Morii E, Tomiyama N

pubmed logopapersJun 26 2025
To evaluate the depiction capability of fine lung nodules and airways using high-resolution settings on ultra-high-resolution energy-integrating detector CT (UHR-CT), incorporating large matrix sizes, thin-slice thickness, and iterative reconstruction (IR)/deep-learning reconstruction (DLR), using cadaveric human lungs and corresponding histological images. Images of 20 lungs were acquired using conventional CT (CCT), UHR-CT, and photon-counting detector CT (PCD-CT). CCT images were reconstructed with a 512 matrix and IR (CCT-512-IR). UHR-CT images were reconstructed with four settings by varying the matrix size and the reconstruction method: UHR-512-IR, UHR-1024-IR, UHR-2048-IR, and UHR-1024-DLR. Two imaging settings of PCD-CT were used: PCD-512-IR and PCD-1024-IR. CT images were visually evaluated and compared with histology. Overall, 6769 nodules (median: 1321 µm) and 92 airways (median: 851 µm) were evaluated. For nodules, UHR-2048-IR outperformed CCT-512-IR, UHR-512-IR, and UHR-1024-IR (p < 0.001). UHR-1024-DLR showed no significant difference from UHR-2048-IR in the overall nodule score after Bonferroni correction (uncorrected p = 0.043); however, for nodules > 1000 μm, UHR-2048-IR demonstrated significantly better scores than UHR-1024-DLR (p = 0.003). For airways, UHR-1024-IR and UHR-512-IR showed significant differences (p < 0.001), with no notable differences among UHR-1024-IR, UHR-2048-IR, and UHR-1024-DLR. UHR-2048-IR detected nodules and airways with median diameters of 604 µm and 699 µm, respectively. No significant difference was observed between UHR-512-IR and PCD-512-IR (p > 0.1). PCD-1024-IR outperformed UHR-CTs for nodules > 1000 μm (p ≤ 0.001), while UHR-1024-DLR outperformed PCD-1024-IR for airways > 1000 μm (p = 0.005). UHR-2048-IR demonstrated the highest scores among the evaluated EID-CT images. UHR-CT showed potential for detecting submillimeter nodules and airways. With the 512 matrix, UHR-CT demonstrated performance comparable to PCD-CT. Question There are scarce data evaluating the depiction capabilities of ultra-high-resolution energy-integrating detector CT (UHR-CT) for fine structures, nor any comparisons with photon-counting detector CT (PCD-CT). Findings UHR-CT depicted nodules and airways with median diameters of 604 µm and 699 µm, showing no significant difference from PCD-CT with the 512 matrix. Clinical relevance High-resolution imaging is crucial for lung diagnosis. UHR-CT has the potential to contribute to pulmonary nodule diagnosis and airway disease evaluation by detecting fine opacities and airways.
Page 5 of 1681679 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.