Sort by:
Page 49 of 1251241 results

MRI-based detection of multiple sclerosis using an optimized attention-based deep learning framework.

Palaniappan R, Delshi Howsalya Devi R, Mathankumar M, Ilangovan K

pubmed logopapersJul 5 2025
Multiple Sclerosis (MS) is a chronic neurological disorder affecting millions worldwide. Early detection is vital to prevent long-term disability. Magnetic Resonance Imaging (MRI) plays a crucial role in MS diagnosis, yet differentiating MS lesions from other brain anomalies remains a complex challenge. To develop and evaluate a novel deep learning framework-2DRK-MSCAN-for the early and accurate detection of MS lesions using MRI data. The proposed approach is validated using three publicly available MRI-based brain tumor datasets and comprises three main stages. First, Gradient Domain Guided Filtering (GDGF) is applied during pre-processing to enhance image quality. Next, an EfficientNetV2L backbone embedded within a U-shaped encoder-decoder architecture facilitates precise segmentation and rich feature extraction. Finally, classification of MS lesions is performed using the 2DRK-MSCAN model, which incorporates deep diffusion residual kernels and multiscale snake convolutional attention mechanisms to improve detection accuracy and robustness. The proposed framework achieved 99.9% accuracy in cross-validation experiments, demonstrating its capability to distinguish MS lesions from other anomalies with high precision. The 2DRK-MSCAN framework offers a reliable and effective solution for early MS detection using MRI. While clinical validation is ongoing, the method shows promising potential for aiding timely intervention and improving patient care.

Impact of super-resolution deep learning-based reconstruction for hippocampal MRI: A volunteer and phantom study.

Takada S, Nakaura T, Yoshida N, Uetani H, Shiraishi K, Kobayashi N, Matsuo K, Morita K, Nagayama Y, Kidoh M, Yamashita Y, Takayanagi R, Hirai T

pubmed logopapersJul 5 2025
To evaluate the effects of super-resolution deep learning-based reconstruction (SR-DLR) on thin-slice T2-weighted hippocampal MR image quality using 3 T MRI, in both human volunteers and phantoms. Thirteen healthy volunteers underwent hippocampal MRI at standard and high resolutions. Original (standard-resolution; StR) images were reconstructed with and without deep learning-based reconstruction (DLR) (Matrix = 320 × 320), and with SR-DLR (Matrix = 960 × 960). High-resolution (HR) images were also reconstructed with/without DLR (Matrix = 960 × 960). Contrast, contrast-to-noise ratio (CNR), and septum slope were analyzed. Two radiologists evaluated the images for noise, contrast, artifacts, sharpness, and overall quality. Quantitative and qualitative results are reported as medians and interquartile ranges (IQR). Comparisons used the Wilcoxon signed-rank test with Holm correction. We also scanned an American College of Radiology (ACR) phantom to evaluate the ability of our SR-DLR approach to reduce artifacts induced by zero-padding interpolation (ZIP). SR-DLR exhibited contrast comparable to original images and significantly higher than HR-images. Its slope was comparable to that of HR images but was significantly steeper than that of StR images (p < 0.01). Furthermore, the CNR of SR-DLR (10.53; IQR: 10.08, 11.69) was significantly superior to the StR-images without DLR (7.5; IQR: 6.4, 8.37), StR-images with DLR (8.73; IQR: 7.68, 9.0), HR-images without DLR (2.24; IQR: 1.43, 2.38), and HR-images with DLR (4.84; IQR: 2.99, 5.43) (p < 0.05). In the phantom study, artifacts induced by ZIP were scarcely observed when using SR-DLR. SR-DLR for hippocampal MRI potentially improves image quality beyond that of actual HR-images while reducing acquisition time.

Unveiling genetic architecture of white matter microstructure through unsupervised deep representation learning of fractional anisotropy images.

Zhao X, Xie Z, He W, Fornage M, Zhi D

pubmed logopapersJul 5 2025
Fractional anisotropy (FA) derived from diffusion MRI is a widely used marker of white matter (WM) integrity. However, conventional FA based genetic studies focus on phenotypes representing tract- or atlas-defined averages, which may oversimplify spatial patterns of WM integrity and thus limiting the genetic discovery. Here, we proposed a deep learning-based framework, termed unsupervised deep representation of white matter (UDR-WM), to extract brain-wide FA features-referred to as UDIP-FA, that capture distributed microstructural variation without prior anatomical assumptions. UDIP-FAs exhibit enhanced sensitivity to aging and substantially higher SNP-based heritability compared to traditional FA phenotypes ( <i>P</i> < 2.20e-16, Mann-Whitney U test, mean h <sup>2</sup> = 50.81%). Through multivariate GWAS, we identified 939 significant lead SNPs in 586 loci, mapped to 3480 genes, dubbed UDIP-FA related genes (UFAGs). UFAGs are overexpressed in glial cells, particularly in astrocytes and oligodendrocytes (Bonferroni-corrected <i>P <</i> 2e-6, Wald Test), and show strong overlap with risk gene sets for schizophrenia and Parkinson disease (Bonferroni-corrected P < 7.06e-3, Fisher exact test). UDIP-FAs are genetically correlated with multiple brain disorders and cognitive traits, including fluid intelligence and reaction time, and are associated with polygenic risk for bone mineral density. Network analyses reveal that UFAGs form disease-enriched modules across protein-protein interaction and co-expression networks, implicating core pathways in myelination and axonal structure. Notably, several UFAGs, including <i>ACHE</i> and <i>ALDH2</i> , are targets of existing neuropsychiatric drugs. Together, our findings establish UDIP-FA as a biologically and clinically informative brain phenotype, enabling high-resolution dissection of white matter genetic architecture and its genetic links to complex brain traits.

Unveiling knee morphology with SHAP: shaping personalized medicine through explainable AI.

Cansiz B, Arslan S, Gültekin MZ, Serbes G

pubmed logopapersJul 5 2025
This study aims to enhance personalized medical assessments and the early detection of knee-related pathologies by examining the relationship between knee morphology and demographic factors such as age, gender, and body mass index. Additionally, gender-specific reference values for knee morphological features will be determined using explainable artificial intelligence (XAI). A retrospective analysis was conducted on the MRI data of 500 healthy knees aged 20-40 years. The study included various knee morphological features such as Distal Femoral Width (DFW), Lateral Femoral Condyler Width (LFCW), Intercondylar Femoral Width (IFW), Anterior Cruciate Ligament Width (ACLW), and Anterior Cruciate Ligament Length (ACLL). Machine learning models, including Decision Trees, Random Forests, Light Gradient Boosting, Multilayer Perceptron, and Support Vector Machines, were employed to predict gender based on these features. The SHapley Additive exPlanation was used to analyze feature importance. The learning models demonstrated high classification performance, with 83.2% (±5.15) for classification of clusters based on morphological feature and 88.06% (±4.8) for gender classification. These results validated that the strong correlation between knee morphology and gender. The study found that DFW is the most significant feature for gender prediction, with values below 78-79 mm range indicating females and values above this range indicating males. LFCW, IFW, ACLW, and ACLL also showed significant gender-based differences. The findings establish gender-specific reference values for knee morphological features, highlighting the impact of gender on knee morphology. These reference values can improve the accuracy of diagnoses and treatment plans tailored to each gender, enhancing personalized medical care.

Artifact-robust Deep Learning-based Segmentation of 3D Phase-contrast MR Angiography: A Novel Data Augmentation Approach.

Tamada D, Oechtering TH, Heidenreich JF, Starekova J, Takai E, Reeder SB

pubmed logopapersJul 5 2025
This study presents a novel data augmentation approach to improve deep learning (DL)-based segmentation for 3D phase-contrast magnetic resonance angiography (PC-MRA) images affected by pulsation artifacts. Augmentation was achieved by simulating pulsation artifacts through the addition of periodic errors in k-space magnitude. The approach was evaluated on PC-MRA datasets from 16 volunteers, comparing DL segmentation with and without pulsation artifact augmentation to a level-set algorithm. Results demonstrate that DL methods significantly outperform the level-set approach and that pulsation artifact augmentation further improves segmentation accuracy, especially for images with lower velocity encoding. Quantitative analysis using Dice-Sørensen coefficient, Intersection over Union, and Average Symmetric Surface Distance metrics confirms the effectiveness of the proposed method. This technique shows promise for enhancing vascular segmentation in various anatomical regions affected by pulsation artifacts, potentially improving clinical applications of PC-MRA.

Identifying features of prior hemorrhage in cerebral cavernous malformations on quantitative susceptibility maps: a machine learning pilot study.

Kinkade S, Li H, Hage S, Koskimäki J, Stadnik A, Lee J, Shenkar R, Papaioannou J, Flemming KD, Kim H, Torbey M, Huang J, Carroll TJ, Girard R, Giger ML, Awad IA

pubmed logopapersJul 4 2025
Features of new bleeding on conventional imaging in cerebral cavernous malformations (CCMs) often disappear after several weeks, yet the risk of rebleeding persists long thereafter. Increases in mean lesional quantitative susceptibility mapping (QSM) ≥ 6% on MRI during 1 year of prospective surveillance have been associated with new symptomatic hemorrhage (SH) during that period. The authors hypothesized that QSM at a single time point reflects features of hemorrhage in the prior year or potential bleeding in the subsequent year. Twenty-eight features were extracted from 265 QSM acquisitions in 120 patients enrolled in a prospective trial readiness project, and machine learning methods examined associations with SH and biomarker bleed (QSM increase ≥ 6%) in prior and subsequent years. QSM features including sum variance, variance, and correlation had lower average values in lesions with SH in the prior year (p < 0.05, false discovery rate corrected). A support-vector machine classifier recurrently selected sum average, mean lesional QSM, sphericity, and margin sharpness features to distinguish biomarker bleeds in the prior year (area under the curve = 0.61, 95% CI 0.52-0.70; p = 0.02). No QSM features were associated with a subsequent bleed. These results provide proof of concept that machine learning may derive features of QSM reflecting prior hemorrhagic activity, meriting further investigation. Clinical trial registration no.: NCT03652181 (ClinicalTrials.gov).

Enhancing Prostate Cancer Classification: A Comprehensive Review of Multiparametric MRI and Deep Learning Integration.

Valizadeh G, Morafegh M, Fatemi F, Ghafoori M, Saligheh Rad H

pubmed logopapersJul 4 2025
Multiparametric MRI (mpMRI) has become an essential tool in the detection of prostate cancer (PCa) and can help many men avoid unnecessary biopsies. However, interpreting prostate mpMRI remains subjective, labor-intensive, and more complex compared to traditional transrectal ultrasound. These challenges will likely grow as MRI is increasingly adopted for PCa screening and diagnosis. This development has sparked interest in non-invasive artificial intelligence (AI) support, as larger and better-labeled datasets now enable deep-learning (DL) models to address important tasks in the prostate MRI workflow. Specifically, DL classification networks can be trained to differentiate between benign tissue and PCa, identify non-clinically significant disease versus clinically significant disease, and predict high-grade cancer at both the lesion and patient levels. This review focuses on the integration of DL classification networks with mpMRI for PCa assessment, examining key network architectures and strategies, the impact of different MRI sequence inputs on model performance, and the added value of incorporating domain knowledge and clinical information into MRI-based DL classifiers. It also highlights reported comparisons between DL models and the Prostate Imaging Reporting and Data System (PI-RADS) for PCa diagnosis and the potential of AI-assisted predictions, alongside ongoing efforts to improve model explainability and interpretability to support clinical trust and adoption. It further discusses the potential role of DL-based computer-aided diagnosis systems in improving the prostate MRI reporting workflow while addressing current limitations and future outlooks to facilitate better clinical integration of these systems. Evidence Level: N/A. Technical Efficacy: Stage 2.

Deep learning-driven abbreviated knee MRI protocols: diagnostic accuracy in clinical practice.

Foti G, Spoto F, Spezia A, Romano L, Caia S, Camerani F, Benedetti D, Mignolli T

pubmed logopapersJul 4 2025
Deep learning (DL) reconstruction shows potential in reducing MRI acquisition times while preserving image quality, but the impact of varying acceleration factors on knee MRI diagnostic accuracy remains undefined. Evaluate diagnostic performance of twofold, fourfold, and sixfold DL-accelerated knee MRI protocols versus standard protocols. In this prospective study, 71 consecutive patients underwent knee MRI with standard, DL2, DL4, and DL6 accelerated protocols. Four radiologists assessed ligament tears, meniscal lesions, bone marrow edema, chondropathy, and extensor abnormalities. Sensitivity, specificity, and interobserver agreement were calculated. DL2 and DL4 demonstrated high diagnostic accuracy. For ACL tears, DL2/DL4 achieved 98-100% sensitivity/specificity, while DL6 showed reduced sensitivity (91-96%). In meniscal evaluation, DL2 maintained 96-100% sensitivity and 98-100% specificity; DL4 showed 94-98% sensitivity and 97-99% specificity. DL6 exhibited decreased sensitivity (82-92%) for subtle lesions. Bone marrow edema detection remained excellent across acceleration factors. Interobserver agreement was excellent for DL2/DL4 (W = 0.91-0.97) and good for DL6 (W = 0.78-0.89). DL2 protocols demonstrate performance nearly identical to standard protocols, while DL4 maintains acceptable diagnostic accuracy for most pathologies. DL6 shows reduced sensitivity for subtle abnormalities, particularly among less experienced readers. DL2 and DL4 protocols represent optimal balance between acquisition time reduction (50-75%) and diagnostic confidence.

Adaptive Gate-Aware Mamba Networks for Magnetic Resonance Fingerprinting

Tianyi Ding, Hongli Chen, Yang Gao, Zhuang Xiong, Feng Liu, Martijn A. Cloos, Hongfu Sun

arxiv logopreprintJul 4 2025
Magnetic Resonance Fingerprinting (MRF) enables fast quantitative imaging by matching signal evolutions to a predefined dictionary. However, conventional dictionary matching suffers from exponential growth in computational cost and memory usage as the number of parameters increases, limiting its scalability to multi-parametric mapping. To address this, recent work has explored deep learning-based approaches as alternatives to DM. We propose GAST-Mamba, an end-to-end framework that combines a dual Mamba-based encoder with a Gate-Aware Spatial-Temporal (GAST) processor. Built on structured state-space models, our architecture efficiently captures long-range spatial dependencies with linear complexity. On 5 times accelerated simulated MRF data (200 frames), GAST-Mamba achieved a T1 PSNR of 33.12~dB, outperforming SCQ (31.69~dB). For T2 mapping, it reached a PSNR of 30.62~dB and SSIM of 0.9124. In vivo experiments further demonstrated improved anatomical detail and reduced artifacts. Ablation studies confirmed that each component contributes to performance, with the GAST module being particularly important under strong undersampling. These results demonstrate the effectiveness of GAST-Mamba for accurate and robust reconstruction from highly undersampled MRF acquisitions, offering a scalable alternative to traditional DM-based methods.
Page 49 of 1251241 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.