Sort by:
Page 451 of 4524519 results

XLLC-Net: A lightweight and explainable CNN for accurate lung cancer classification using histopathological images.

Jim JR, Rayed ME, Mridha MF, Nur K

pubmed logopapersJan 1 2025
Lung cancer imaging plays a crucial role in early diagnosis and treatment, where machine learning and deep learning have significantly advanced the accuracy and efficiency of disease classification. This study introduces the Explainable and Lightweight Lung Cancer Net (XLLC-Net), a streamlined convolutional neural network designed for classifying lung cancer from histopathological images. Using the LC25000 dataset, which includes three lung cancer classes and two colon cancer classes, we focused solely on the three lung cancer classes for this study. XLLC-Net effectively discerns complex disease patterns within these classes. The model consists of four convolutional layers and contains merely 3 million parameters, considerably reducing its computational footprint compared to existing deep learning models. This compact architecture facilitates efficient training, completing each epoch in just 60 seconds. Remarkably, XLLC-Net achieves a classification accuracy of 99.62% [Formula: see text] 0.16%, with precision, recall, and F1 score of 99.33% [Formula: see text] 0.30%, 99.67% [Formula: see text] 0.30%, and 99.70% [Formula: see text] 0.30%, respectively. Furthermore, the integration of Explainable AI techniques, such as Saliency Map and GRAD-CAM, enhances the interpretability of the model, offering clear visual insights into its decision-making process. Our results underscore the potential of lightweight DL models in medical imaging, providing high accuracy and rapid training while ensuring model transparency and reliability.

Intelligent and precise auxiliary diagnosis of breast tumors using deep learning and radiomics.

Wang T, Zang B, Kong C, Li Y, Yang X, Yu Y

pubmed logopapersJan 1 2025
Breast cancer is the most common malignant tumor among women worldwide, and early diagnosis is crucial for reducing mortality rates. Traditional diagnostic methods have significant limitations in terms of accuracy and consistency. Imaging is a common technique for diagnosing and predicting breast cancer, but human error remains a concern. Increasingly, artificial intelligence (AI) is being employed to assist physicians in reducing diagnostic errors. We developed an intelligent diagnostic model combining deep learning and radiomics to enhance breast tumor diagnosis. The model integrates MobileNet with ResNeXt-inspired depthwise separable and grouped convolutions, improving feature processing and efficiency while reducing parameters. Using AI-Dhabyani and TCIA breast ultrasound datasets, we validated the model internally and externally, comparing it to VGG16, ResNet, AlexNet, and MobileNet. Results: The internal validation set achieved an accuracy of 83.84% with an AUC of 0.92, outperforming other models. The external validation set showed an accuracy of 69.44% with an AUC of 0.75, demonstrating high robustness and generalizability. Conclusions: We developed an intelligent diagnostic model using deep learning and radiomics to improve breast tumor diagnosis. The model combines MobileNet with ResNeXt-inspired depthwise separable and grouped convolutions, enhancing feature processing and efficiency while reducing parameters. It was validated internally and externally using the AI-Dhabyani and TCIA breast ultrasound datasets and compared with VGG16, ResNet, AlexNet, and MobileNet.

Integrating multimodal imaging and peritumoral features for enhanced prostate cancer diagnosis: A machine learning approach.

Zhou H, Xie M, Shi H, Shou C, Tang M, Zhang Y, Hu Y, Liu X

pubmed logopapersJan 1 2025
Prostate cancer is a common malignancy in men, and accurately distinguishing between benign and malignant nodules at an early stage is crucial for optimizing treatment. Multimodal imaging (such as ADC and T2) plays an important role in the diagnosis of prostate cancer, but effectively combining these imaging features for accurate classification remains a challenge. This retrospective study included MRI data from 199 prostate cancer patients. Radiomic features from both the tumor and peritumoral regions were extracted, and a random forest model was used to select the most contributive features for classification. Three machine learning models-Random Forest, XGBoost, and Extra Trees-were then constructed and trained on four different feature combinations (tumor ADC, tumor T2, tumor ADC+T2, and tumor + peritumoral ADC+T2). The model incorporating multimodal imaging features and peritumoral characteristics showed superior classification performance. The Extra Trees model outperformed the others across all feature combinations, particularly in the tumor + peritumoral ADC+T2 group, where the AUC reached 0.729. The AUC values for the other combinations also exceeded 0.65. While the Random Forest and XGBoost models performed slightly lower, they still demonstrated strong classification abilities, with AUCs ranging from 0.63 to 0.72. SHAP analysis revealed that key features, such as tumor texture and peritumoral gray-level features, significantly contributed to the model's classification decisions. The combination of multimodal imaging data with peritumoral features moderately improved the accuracy of prostate cancer classification. This model provides a non-invasive and effective diagnostic tool for clinical use and supports future personalized treatment decisions.

MRISeqClassifier: A Deep Learning Toolkit for Precise MRI Sequence Classification.

Pan J, Chen Q, Sun C, Liang R, Bian J, Xu J

pubmed logopapersJan 1 2025
Magnetic Resonance Imaging (MRI) is a crucial diagnostic tool in medicine, widely used to detect and assess various health conditions. Different MRI sequences, such as T1-weighted, T2-weighted, and FLAIR, serve distinct roles by highlighting different tissue characteristics and contrasts. However, distinguishing them based solely on the description file is currently impossible due to confusing or incorrect annotations. Additionally, there is a notable lack of effective tools to differentiate these sequences. In response, we developed a deep learning-based toolkit tailored for small, unrefined MRI datasets. This toolkit enables precise sequence classification and delivers performance comparable to systems trained on large, meticulously curated datasets. Utilizing lightweight model architectures and incorporating a voting ensemble method, the toolkit enhances accuracy and stability. It achieves a 99% accuracy rate using only 10% of the data typically required in other research. The code is available at https://github.com/JinqianPan/MRISeqClassifier.

Providing context: Extracting non-linear and dynamic temporal motifs from brain activity.

Geenjaar E, Kim D, Calhoun V

pubmed logopapersJan 1 2025
Approaches studying the dynamics of resting-state functional magnetic resonance imaging (rs-fMRI) activity often focus on time-resolved functional connectivity (tr-FC). While many tr-FC approaches have been proposed, most are linear approaches, e.g. computing the linear correlation at a timestep or within a window. In this work, we propose to use a generative non-linear deep learning model, a disentangled variational autoencoder (DSVAE), that factorizes out window-specific (context) information from timestep-specific (local) information. This has the advantage of allowing our model to capture differences at multiple temporal scales. We find that by separating out temporal scales our model's window-specific embeddings, or as we refer to them, context embeddings, more accurately separate windows from schizophrenia patients and control subjects than baseline models and the standard tr-FC approach in a low-dimensional space. Moreover, we find that for individuals with schizophrenia, our model's context embedding space is significantly correlated with both age and symptom severity. Interestingly, patients appear to spend more time in three clusters, one closer to controls which shows increased visual-sensorimotor, cerebellar-subcortical, and reduced cerebellar-visual functional network connectivity (FNC), an intermediate station showing increased subcortical-sensorimotor FNC, and one that shows decreased visual-sensorimotor, decreased subcortical-sensorimotor, and increased visual-subcortical domains. We verify that our model captures features that are complementary to - but not the same as - standard tr-FC features. Our model can thus help broaden the neuroimaging toolset in analyzing fMRI dynamics and shows potential as an approach for finding psychiatric links that are more sensitive to individual and group characteristics.

Verity plots: A novel method of visualizing reliability assessments of artificial intelligence methods in quantitative cardiovascular magnetic resonance.

Hadler T, Ammann C, Saad H, Grassow L, Reisdorf P, Lange S, Däuber S, Schulz-Menger J

pubmed logopapersJan 1 2025
Artificial intelligence (AI) methods have established themselves in cardiovascular magnetic resonance (CMR) as automated quantification tools for ventricular volumes, function, and myocardial tissue characterization. Quality assurance approaches focus on measuring and controlling AI-expert differences but there is a need for tools that better communicate reliability and agreement. This study introduces the Verity plot, a novel statistical visualization that communicates the reliability of quantitative parameters (QP) with clear agreement criteria and descriptive statistics. Tolerance ranges for the acceptability of the bias and variance of AI-expert differences were derived from intra- and interreader evaluations. AI-expert agreement was defined by bias confidence and variance tolerance intervals being within bias and variance tolerance ranges. A reliability plot was designed to communicate this statistical test for agreement. Verity plots merge reliability plots with density and a scatter plot to illustrate AI-expert differences. Their utility was compared against Correlation, Box and Bland-Altman plots. Bias and variance tolerance ranges were established for volume, function, and myocardial tissue characterization QPs. Verity plots provided insights into statstistcal properties, outlier detection, and parametric test assumptions, outperforming Correlation, Box and Bland-Altman plots. Additionally, they offered a framework for determining the acceptability of AI-expert bias and variance. Verity plots offer markers for bias, variance, trends and outliers, in addition to deciding AI quantification acceptability. The plots were successfully applied to various AI methods in CMR and decisively communicated AI-expert agreement.

Clinical-radiomics models with machine-learning algorithms to distinguish uncomplicated from complicated acute appendicitis in adults: a multiphase multicenter cohort study.

Li L, Sun Y, Sun Y, Gao Y, Zhang B, Qi R, Sheng F, Yang X, Liu X, Liu L, Lu C, Chen L, Zhang K

pubmed logopapersJan 1 2025
Increasing evidence suggests that non-operative management (NOM) with antibiotics could serve as a safe alternative to surgery for the treatment of uncomplicated acute appendicitis (AA). However, accurately differentiating between uncomplicated and complicated AA remains challenging. Our aim was to develop and validate machine-learning-based diagnostic models to differentiate uncomplicated from complicated AA. This was a multicenter cohort trial conducted from January 2021 and December 2022 across five tertiary hospitals. Three distinct diagnostic models were created, namely, the clinical-parameter-based model, the CT-radiomics-based model, and the clinical-radiomics-fused model. These models were developed using a comprehensive set of eight machine-learning algorithms, which included logistic regression (LR), support vector machine (SVM), random forest (RF), decision tree (DT), gradient boosting (GB), K-nearest neighbors (KNN), Gaussian Naïve Bayes (GNB), and multi-layer perceptron (MLP). The performance and accuracy of these diverse models were compared. All models exhibited excellent diagnostic performance in the training cohort, achieving a maximal AUC of 1.00. For the clinical-parameter model, the GB classifier yielded the optimal AUC of 0.77 (95% confidence interval [CI]: 0.64-0.90) in the testing cohort, while the LR classifier yielded the optimal AUC of 0.76 (95% CI: 0.66-0.86) in the validation cohort. For the CT-radiomics-based model, GB classifier achieved the best AUC of 0.74 (95% CI: 0.60-0.88) in the testing cohort, and SVM yielded an optimal AUC of 0.63 (95% CI: 0.51-0.75) in the validation cohort. For the clinical-radiomics-fused model, RF classifier yielded an optimal AUC of 0.84 (95% CI: 0.74-0.95) in the testing cohort and 0.76 (95% CI: 0.67-0.86) in the validation cohort. An open-access, user-friendly online tool was developed for clinical application. This multicenter study suggests that the clinical-radiomics-fused model, constructed using RF algorithm, effectively differentiated between complicated and uncomplicated AA.

A novel spectral transformation technique based on special functions for improved chest X-ray image classification.

Aljohani A

pubmed logopapersJan 1 2025
Chest X-ray image classification plays an important role in medical diagnostics. Machine learning algorithms enhanced the performance of these classification algorithms by introducing advance techniques. These classification algorithms often requires conversion of a medical data to another space in which the original data is reduced to important values or moments. We developed a mechanism which converts a given medical image to a spectral space which have a base set composed of special functions. In this study, we propose a chest X-ray image classification method based on spectral coefficients. The spectral coefficients are based on an orthogonal system of Legendre type smooth polynomials. We developed the mathematical theory to calculate spectral moment in Legendre polynomails space and use these moments to train traditional classifier like SVM and random forest for a classification task. The procedure is applied to a latest data set of X-Ray images. The data set is composed of X-Ray images of three different classes of patients, normal, Covid infected and pneumonia. The moments designed in this study, when used in SVM or random forest improves its ability to classify a given X-Ray image at a high accuracy. A parametric study of the proposed approach is presented. The performance of these spectral moments is checked in Support vector machine and Random forest algorithm. The efficiency and accuracy of the proposed method is presented in details. All our simulation is performed in computation softwares, Matlab and Python. The image pre processing and spectral moments generation is performed in Matlab and the implementation of the classifiers is performed with python. It is observed that the proposed approach works well and provides satisfactory results (0.975 accuracy), however further studies are required to establish a more accurate and fast version of this approach.

Ground-truth-free deep learning approach for accelerated quantitative parameter mapping with memory efficient learning.

Fujita N, Yokosawa S, Shirai T, Terada Y

pubmed logopapersJan 1 2025
Quantitative MRI (qMRI) requires the acquisition of multiple images with parameter changes, resulting in longer measurement times than conventional imaging. Deep learning (DL) for image reconstruction has shown a significant reduction in acquisition time and improved image quality. In qMRI, where the image contrast varies between sequences, preparing large, fully-sampled (FS) datasets is challenging. Recently, methods that do not require FS data such as self-supervised learning (SSL) and zero-shot self-supervised learning (ZSSSL) have been proposed. Another challenge is the large GPU memory requirement for DL-based qMRI image reconstruction, owing to the simultaneous processing of multiple contrast images. In this context, Kellman et al. proposed memory-efficient learning (MEL) to save the GPU memory. This study evaluated SSL and ZSSSL frameworks with MEL to accelerate qMRI. Three experiments were conducted using the following sequences: 2D T2 mapping/MSME (Experiment 1), 3D T1 mapping/VFA-SPGR (Experiment 2), and 3D T2 mapping/DESS (Experiment 3). Each experiment used the undersampled k-space data under acceleration factors of 4, 8, and 12. The reconstructed maps were evaluated using quantitative metrics. In this study, we performed three qMRI reconstruction measurements and compared the performance of the SL- and GT-free learning methods, SSL and ZSSSL. Overall, the performances of SSL and ZSSSL were only slightly inferior to those of SL, even under high AF conditions. The quantitative errors in diagnostically important tissues (WM, GM, and meniscus) were small, demonstrating that SL and ZSSSL performed comparably. Additionally, by incorporating a GPU memory-saving implementation, we demonstrated that the network can operate on a GPU with a small memory (<8GB) with minimal speed reduction. This study demonstrates the effectiveness of memory-efficient GT-free learning methods using MEL to accelerate qMRI.

Radiomics machine learning based on asymmetrically prominent cortical and deep medullary veins combined with clinical features to predict prognosis in acute ischemic stroke: a retrospective study.

Li H, Chang C, Zhou B, Lan Y, Zang P, Chen S, Qi S, Ju R, Duan Y

pubmed logopapersJan 1 2025
Acute ischemic stroke (AIS) has a poor prognosis and a high recurrence rate. Predicting the outcomes of AIS patients in the early stages of the disease is therefore important. The establishment of intracerebral collateral circulation significantly improves the survival of brain cells and the outcomes of AIS patients. However, no machine learning method has been applied to investigate the correlation between the dynamic evolution of intracerebral venous collateral circulation and AIS prognosis. Therefore, we employed a support vector machine (SVM) algorithm to analyze asymmetrically prominent cortical veins (APCVs) and deep medullary veins (DMVs) to establish a radiomic model for predicting the prognosis of AIS by combining clinical indicators. The magnetic resonance imaging (MRI) data and clinical indicators of 150 AIS patients were retrospectively analyzed. Regions of interest corresponding to the DMVs and APCVs were delineated, and least absolute shrinkage and selection operator (LASSO) regression was used to select features extracted from these regions. An APCV-DMV radiomic model was created via the SVM algorithm, and independent clinical risk factors associated with AIS were combined with the radiomic model to generate a joint model. The SVM algorithm was selected because of its proven efficacy in handling high-dimensional radiomic data compared with alternative classifiers (<i>e.g.</i>, random forest) in pilot experiments. Nine radiomic features associated with AIS patient outcomes were ultimately selected. In the internal training test set, the AUCs of the clinical, DMV-APCV radiomic and joint models were 0.816, 0.976 and 0.996, respectively. The DeLong test revealed that the predictive performance of the joint model was better than that of the individual models, with a test set AUC of 0.996, sensitivity of 0.905, and specificity of 1.000 (<i>P</i> < 0.05). Using radiomic methods, we propose a novel joint predictive model that combines the imaging histologic features of the APCV and DMV with clinical indicators. This model quantitatively characterizes the morphological and functional attributes of venous collateral circulation, elucidating its important role in accurately evaluating the prognosis of patients with AIS and providing a noninvasive and highly accurate imaging tool for early prognostic prediction.
Page 451 of 4524519 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.