Sort by:
Page 44 of 58578 results

A deep learning model integrating domain-specific features for enhanced glaucoma diagnosis.

Xu J, Jing E, Chai Y

pubmed logopapersMay 23 2025
Glaucoma is a group of serious eye diseases that can cause incurable blindness. Despite the critical need for early detection, over 60% of cases remain undiagnosed, especially in less developed regions. Glaucoma diagnosis is a costly task and some models have been proposed to automate diagnosis based on images of the retina, specifically the area known as the optic cup and the associated disc where retinal blood vessels and nerves enter and leave the eye. However, diagnosis is complicated because both normal and glaucoma-affected eyes can vary greatly in appearance. Some normal cases, like glaucoma, exhibit a larger cup-to-disc ratio, one of the main diagnostic criteria, making it challenging to distinguish between them. We propose a deep learning model with domain features (DLMDF) to combine unstructured and structured features to distinguish between glaucoma and physiologic large cups. The structured features were based upon the known cup-to-disc ratios of the four quadrants of the optic discs in normal, physiologic large cups, and glaucomatous optic cups. We segmented each cup and disc using a fully convolutional neural network and then calculated the cup size, disc size, and cup-to-disc ratio of each quadrant. The unstructured features were learned from a deep convolutional neural network. The average precision (AP) for disc segmentation was 98.52%, and for cup segmentation it was also 98.57%. Thus, the relatively high AP values enabled us to calculate the 15 reliable features from each segmented disc and cup. In classification tasks, the DLMDF outperformed other models, achieving superior accuracy, precision, and recall. These results validate the effectiveness of combining deep learning-derived features with domain-specific structured features, underscoring the potential of this approach to advance glaucoma diagnosis.

EnsembleEdgeFusion: advancing semantic segmentation in microvascular decompression imaging with innovative ensemble techniques.

Dhiyanesh B, Vijayalakshmi M, Saranya P, Viji D

pubmed logopapersMay 23 2025
Semantic segmentation involves an imminent part in the investigation of medical images, particularly in the domain of microvascular decompression, where publicly available datasets are scarce, and expert annotation is demanding. In response to this challenge, this study presents a meticulously curated dataset comprising 2003 RGB microvascular decompression images, each intricately paired with annotated masks. Extensive data preprocessing and augmentation strategies were employed to fortify the training dataset, enhancing the robustness of proposed deep learning model. Numerous up-to-date semantic segmentation approaches, including DeepLabv3+, U-Net, DilatedFastFCN with JPU, DANet, and a custom Vanilla architecture, were trained and evaluated using diverse performance metrics. Among these models, DeepLabv3 + emerged as a strong contender, notably excelling in F1 score. Innovatively, ensemble techniques, such as stacking and bagging, were introduced to further elevate segmentation performance. Bagging, notably with the Naïve Bayes approach, exhibited significant improvements, underscoring the potential of ensemble methods in medical image segmentation. The proposed EnsembleEdgeFusion technique exhibited superior loss reduction during training compared to DeepLabv3 + and achieved maximum Mean Intersection over Union (MIoU) scores of 77.73%, surpassing other models. Category-wise analysis affirmed its superiority in accurately delineating various categories within the test dataset.

Artificial intelligence automated measurements of spinopelvic parameters in adult spinal deformity-a systematic review.

Bishara A, Patel S, Warman A, Jo J, Hughes LP, Khalifeh JM, Azad TD

pubmed logopapersMay 23 2025
This review evaluates advances made in deep learning (DL) applications to automatic spinopelvic parameter estimation, comparing their accuracy to manual measurements performed by surgeons. The PubMed database was queried for studies on DL measurement of adult spinopelvic parameters between 2014 and 2024. Studies were excluded if they focused on pediatric patients, non-deformity-related conditions, non-human subjects, or if they lacked sufficient quantitative data comparing DL models to human measurements. Included studies were assessed based on model architecture, patient demographics, training, validation, testing methods, and sample sizes, as well as performance compared to manual methods. Of 442 screened articles, 16 were included, with sample sizes ranging from 15 to 9,832 radiograph images and reporting interclass correlation coefficients (ICCs) of 0.56 to 1.00. Measurements of pelvic tilt, pelvic incidence, T4-T12 kyphosis, L1-L4 lordosis, and SVA showed consistently high ICCs (>0.80) and low mean absolute deviations (MADs <6°), with substantial number of studies reporting pelvic tilt achieving an excellent ICC of 0.90 or greater. In contrast, T1-T12 kyphosis and L4-S1 lordosis exhibited lower ICCs and higher measurement errors. Overall, most DL models demonstrated strong correlations (>0.80) with clinician measurements and minimal differences compared to manual references, except for T1-T12 kyphosis (average Pearson correlation: 0.68), L1-L4 lordosis (average Pearson correlation: 0.75), and L4-S1 lordosis (average Pearson correlation: 0.65). Novel computer vision algorithms show promising accuracy in measuring spinopelvic parameters, comparable to manual surgeon measurements. Future research should focus on external validation, additional imaging modalities, and the feasibility of integration in clinical settings to assess model reliability and predictive capacity.

A Unified Multi-Scale Attention-Based Network for Automatic 3D Segmentation of Lung Parenchyma & Nodules In Thoracic CT Images

Muhammad Abdullah, Furqan Shaukat

arxiv logopreprintMay 23 2025
Lung cancer has been one of the major threats across the world with the highest mortalities. Computer-aided detection (CAD) can help in early detection and thus can help increase the survival rate. Accurate lung parenchyma segmentation (to include the juxta-pleural nodules) and lung nodule segmentation, the primary symptom of lung cancer, play a crucial role in the overall accuracy of the Lung CAD pipeline. Lung nodule segmentation is quite challenging because of the diverse nodule types and other inhibit structures present within the lung lobes. Traditional machine/deep learning methods suffer from generalization and robustness. Recent Vision Language Models/Foundation Models perform well on the anatomical level, but they suffer on fine-grained segmentation tasks, and their semi-automatic nature limits their effectiveness in real-time clinical scenarios. In this paper, we propose a novel method for accurate 3D segmentation of lung parenchyma and lung nodules. The proposed architecture is an attention-based network with residual blocks at each encoder-decoder state. Max pooling is replaced by strided convolutions at the encoder, and trilinear interpolation is replaced by transposed convolutions at the decoder to maximize the number of learnable parameters. Dilated convolutions at each encoder-decoder stage allow the model to capture the larger context without increasing computational costs. The proposed method has been evaluated extensively on one of the largest publicly available datasets, namely LUNA16, and is compared with recent notable work in the domain using standard performance metrics like Dice score, IOU, etc. It can be seen from the results that the proposed method achieves better performance than state-of-the-art methods. The source code, datasets, and pre-processed data can be accessed using the link: https://github.com/EMeRALDsNRPU/Attention-Based-3D-ResUNet.

Dual Attention Residual U-Net for Accurate Brain Ultrasound Segmentation in IVH Detection

Dan Yuan, Yi Feng, Ziyun Tang

arxiv logopreprintMay 23 2025
Intraventricular hemorrhage (IVH) is a severe neurological complication among premature infants, necessitating early and accurate detection from brain ultrasound (US) images to improve clinical outcomes. While recent deep learning methods offer promise for computer-aided diagnosis, challenges remain in capturing both local spatial details and global contextual dependencies critical for segmenting brain anatomies. In this work, we propose an enhanced Residual U-Net architecture incorporating two complementary attention mechanisms: the Convolutional Block Attention Module (CBAM) and a Sparse Attention Layer (SAL). The CBAM improves the model's ability to refine spatial and channel-wise features, while the SAL introduces a dual-branch design, sparse attention filters out low-confidence query-key pairs to suppress noise, and dense attention ensures comprehensive information propagation. Extensive experiments on the Brain US dataset demonstrate that our method achieves state-of-the-art segmentation performance, with a Dice score of 89.04% and IoU of 81.84% for ventricle region segmentation. These results highlight the effectiveness of integrating spatial refinement and attention sparsity for robust brain anatomy detection. Code is available at: https://github.com/DanYuan001/BrainImgSegment.

FreqU-FNet: Frequency-Aware U-Net for Imbalanced Medical Image Segmentation

Ruiqi Xing

arxiv logopreprintMay 23 2025
Medical image segmentation faces persistent challenges due to severe class imbalance and the frequency-specific distribution of anatomical structures. Most conventional CNN-based methods operate in the spatial domain and struggle to capture minority class signals, often affected by frequency aliasing and limited spectral selectivity. Transformer-based models, while powerful in modeling global dependencies, tend to overlook critical local details necessary for fine-grained segmentation. To overcome these limitations, we propose FreqU-FNet, a novel U-shaped segmentation architecture operating in the frequency domain. Our framework incorporates a Frequency Encoder that leverages Low-Pass Frequency Convolution and Daubechies wavelet-based downsampling to extract multi-scale spectral features. To reconstruct fine spatial details, we introduce a Spatial Learnable Decoder (SLD) equipped with an adaptive multi-branch upsampling strategy. Furthermore, we design a frequency-aware loss (FAL) function to enhance minority class learning. Extensive experiments on multiple medical segmentation benchmarks demonstrate that FreqU-FNet consistently outperforms both CNN and Transformer baselines, particularly in handling under-represented classes, by effectively exploiting discriminative frequency bands.

CENet: Context Enhancement Network for Medical Image Segmentation

Afshin Bozorgpour, Sina Ghorbani Kolahi, Reza Azad, Ilker Hacihaliloglu, Dorit Merhof

arxiv logopreprintMay 23 2025
Medical image segmentation, particularly in multi-domain scenarios, requires precise preservation of anatomical structures across diverse representations. While deep learning has advanced this field, existing models often struggle with accurate boundary representation, variability in organ morphology, and information loss during downsampling, limiting their accuracy and robustness. To address these challenges, we propose the Context Enhancement Network (CENet), a novel segmentation framework featuring two key innovations. First, the Dual Selective Enhancement Block (DSEB) integrated into skip connections enhances boundary details and improves the detection of smaller organs in a context-aware manner. Second, the Context Feature Attention Module (CFAM) in the decoder employs a multi-scale design to maintain spatial integrity, reduce feature redundancy, and mitigate overly enhanced representations. Extensive evaluations on both radiology and dermoscopic datasets demonstrate that CENet outperforms state-of-the-art (SOTA) methods in multi-organ segmentation and boundary detail preservation, offering a robust and accurate solution for complex medical image analysis tasks. The code is publicly available at https://github.com/xmindflow/cenet.

PDS-UKAN: Subdivision hopping connected to the U-KAN network for medical image segmentation.

Deng L, Wang W, Chen S, Yang X, Huang S, Wang J

pubmed logopapersMay 23 2025
Accurate and efficient segmentation of medical images plays a vital role in clinical tasks, such as diagnostic procedures and planning treatments. Traditional U-shaped encoder-decoder architectures, built on convolutional and transformer-based networks, have shown strong performance in medical image processing. However, the simple skip connections commonly used in these networks face limitations, such as insufficient nonlinear modeling capacity, weak global multiscale context modeling, and limited interpretability. To address these challenges, this study proposes the PDS-UKAN network, an innovative subdivision-based U-KAN architecture, designed to improve segmentation accuracy. The PDS-UKAN incorporates a PKAN module-comprising partial convolutions and Kolmogorov - Arnold network layers-into the encoder bottleneck, enhancing the network's nonlinear modeling and interpretability. Additionally, the proposed Dual-Branch Convolutional Boundary Enhancement Module (DBE) focuses on pixel-level boundary refinement, improving edge detail preservation in shallow skip connections. Meanwhile, the Skip Connection Channel Spatial Attention Module (SCCSA) mechanism is applied in the deeper skip connections to strengthen cross-dimensional interactions between channels and spatial features, mitigating the loss of spatial information due to downsampling. Extensive experiments across multiple medical imaging datasets demonstrate that PDS-UKAN consistently achieves superior performance compared to state-of-the-art (SOTA) methods.

How We Won the ISLES'24 Challenge by Preprocessing

Tianyi Ren, Juampablo E. Heras Rivera, Hitender Oswal, Yutong Pan, William Henry, Sophie Walters, Mehmet Kurt

arxiv logopreprintMay 23 2025
Stroke is among the top three causes of death worldwide, and accurate identification of stroke lesion boundaries is critical for diagnosis and treatment. Supervised deep learning methods have emerged as the leading solution for stroke lesion segmentation but require large, diverse, and annotated datasets. The ISLES'24 challenge addresses this need by providing longitudinal stroke imaging data, including CT scans taken on arrival to the hospital and follow-up MRI taken 2-9 days from initial arrival, with annotations derived from follow-up MRI. Importantly, models submitted to the ISLES'24 challenge are evaluated using only CT inputs, requiring prediction of lesion progression that may not be visible in CT scans for segmentation. Our winning solution shows that a carefully designed preprocessing pipeline including deep-learning-based skull stripping and custom intensity windowing is beneficial for accurate segmentation. Combined with a standard large residual nnU-Net architecture for segmentation, this approach achieves a mean test Dice of 28.5 with a standard deviation of 21.27.

FLAMeS: A Robust Deep Learning Model for Automated Multiple Sclerosis Lesion Segmentation

Dereskewicz, E., La Rosa, F., dos Santos Silva, J., Sizer, E., Kohli, A., Wynen, M., Mullins, W. A., Maggi, P., Levy, S., Onyemeh, K., Ayci, B., Solomon, A. J., Assländer, J., Al-Louzi, O., Reich, D. S., Sumowski, J. F., Beck, E. S.

medrxiv logopreprintMay 22 2025
Background and Purpose Assessment of brain lesions on MRI is crucial for research in multiple sclerosis (MS). Manual segmentation is time consuming and inconsistent. We aimed to develop an automated MS lesion segmentation algorithm for T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI. Methods We developed FLAIR Lesion Analysis in Multiple Sclerosis (FLAMeS), a deep learning-based MS lesion segmentation algorithm based on the nnU-Net 3D full-resolution U-Net and trained on 668 FLAIR 1.5 and 3 tesla scans from persons with MS. FLAMeS was evaluated on three external datasets: MSSEG-2 (n=14), MSLesSeg (n=51), and a clinical cohort (n=10), and compared to SAMSEG, LST-LPA, and LST-AI. Performance was assessed qualitatively by two blinded experts and quantitatively by comparing automated and ground truth lesion masks using standard segmentation metrics. Results In a blinded qualitative review of 20 scans, both raters selected FLAMeS as the most accurate segmentation in 15 cases, with one rater favoring FLAMeS in two additional cases. Across all testing datasets, FLAMeS achieved a mean Dice score of 0.74, a true positive rate of 0.84, and an F1 score of 0.78, consistently outperforming the benchmark methods. For other metrics, including positive predictive value, relative volume difference, and false positive rate, FLAMeS performed similarly or better than benchmark methods. Most lesions missed by FLAMeS were smaller than 10 mm3, whereas the benchmark methods missed larger lesions in addition to smaller ones. Conclusions FLAMeS is an accurate, robust method for MS lesion segmentation that outperforms other publicly available methods.
Page 44 of 58578 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.