Sort by:
Page 43 of 1301294 results

Radio DINO: A foundation model for advanced radiomics and AI-driven medical imaging analysis.

Zedda L, Loddo A, Di Ruberto C

pubmed logopapersJun 28 2025
Radiomics is transforming medical imaging by extracting complex features that enhance disease diagnosis, prognosis, and treatment evaluation. However, traditional approaches face significant challenges, such as the need for manual feature engineering, high dimensionality, and limited sample sizes. This paper presents Radio DINO, a novel family of deep learning foundation models that leverage self-supervised learning (SSL) techniques from DINO and DINOV2, pretrained on the RadImageNet dataset. The novelty of our approach lies in (1) developing Radio DINO to capture rich semantic embeddings, enabling robust feature extraction without manual intervention, (2) demonstrating superior performance across various clinical tasks on the MedMNISTv2 dataset, surpassing existing models, and (3) enhancing the interpretability of the model by providing visualizations that highlight its focus on clinically relevant image regions. Our results show that Radio DINO has the potential to democratize advanced radiomics tools, making them accessible to healthcare institutions with limited resources and ultimately improving diagnostic and prognostic outcomes in radiology.

Novel Artificial Intelligence-Driven Infant Meningitis Screening From High-Resolution Ultrasound Imaging.

Sial HA, Carandell F, Ajanovic S, Jiménez J, Quesada R, Santos F, Buck WC, Sidat M, Bassat Q, Jobst B, Petrone P

pubmed logopapersJun 28 2025
Infant meningitis can be a life-threatening disease and requires prompt and accurate diagnosis to prevent severe outcomes or death. Gold-standard diagnosis requires lumbar puncture (LP) to obtain and analyze cerebrospinal fluid (CSF). Despite being standard practice, LPs are invasive, pose risks for the patient and often yield negative results, either due to contamination with red blood cells from the puncture itself or because LPs are routinely performed to rule out a life-threatening infection, despite the disease's relatively low incidence. Furthermore, in low-income settings where incidence is the highest, LPs and CSF exams are rarely feasible, and suspected meningitis cases are generally treated empirically. There is a growing need for non-invasive, accurate diagnostic methods. We developed a three-stage deep learning framework using Neosonics ultrasound technology for 30 infants with suspected meningitis and a permeable fontanelle at three Spanish University Hospitals (from 2021 to 2023). In stage 1, 2194 images were processed for quality control using a vessel/non-vessel model, with a focus on vessel identification and manual removal of images exhibiting artifacts such as poor coupling and clutter. This refinement process resulted in a final cohort comprising 16 patients-6 cases (336 images) and 10 controls (445 images), yielding 781 images for the second stage. The second stage involved the use of a deep learning model to classify images based on a white blood cell count threshold (set at 30 cells/mm<sup>3</sup>) into control or meningitis categories. The third stage integrated explainable artificial intelligence (XAI) methods, such as Grad-CAM visualizations, alongside image statistical analysis, to provide transparency and interpretability of the model's decision-making process in our artificial intelligence-driven screening tool. Our approach achieved 96% accuracy in quality control and 93% precision and 92% accuracy in image-level meningitis detection, with an overall patient-level accuracy of 94%. It identified 6 meningitis cases and 10 controls with 100% sensitivity and 90% specificity, demonstrating only a single misclassification. The use of gradient-weighted class activation mapping-based XAI significantly enhanced diagnostic interpretability, and to further refine our insights we incorporated a statistics-based XAI approach. By analyzing image metrics such as entropy and standard deviation, we identified texture variations in the images attributable to the presence of cells, which improved the interpretability of our diagnostic tool. This study supports the efficacy of a multi-stage deep learning model for non-invasive screening of infant meningitis and its potential to guide the need for LPs. It also highlights the transformative potential of artificial intelligence in medical diagnostic screening for neonatal health care, paving the way for future research and innovations.

Emerging Artificial Intelligence Innovations in Rheumatoid Arthritis and Challenges to Clinical Adoption.

Gilvaz VJ, Sudheer A, Reginato AM

pubmed logopapersJun 28 2025
This review was written to inform practicing clinical rheumatologists about recent advances in artificial intelligence (AI) based research in rheumatoid arthritis (RA), using accessible and practical language. We highlight developments from 2023 to early 2025 across diagnostic imaging, treatment prediction, drug discovery, and patient-facing tools. Given the increasing clinical interest in AI and its potential to augment care delivery, this article aims to bridge the gap between technical innovation and real-world rheumatology practice. Several AI models have demonstrated high accuracy in early RA detection using imaging modalities such as thermal imaging and nuclear scans. Predictive models for treatment response have leveraged routinely collected electronic health record (EHR) data, moving closer to practical application in clinical workflows. Patient-facing tools like mobile symptom checkers and large language models (LLMs) such as ChatGPT show promise in enhancing education and engagement, although accuracy and safety remain variable. AI has also shown utility in identifying novel biomarkers and accelerating drug discovery. Despite these advances, as of early 2025, no AI-based tools have received FDA approval for use in rheumatology, in contrast to other specialties. Artificial intelligence holds tremendous promise to enhance clinical care in RA-from early diagnosis to personalized therapy. However, clinical adoption remains limited due to regulatory, technical, and implementation challenges. A streamlined regulatory framework and closer collaboration between clinicians, researchers, and industry partners are urgently needed. With thoughtful integration, AI can serve as a valuable adjunct in addressing clinical complexity and workforce shortages in rheumatology.

Automated Evaluation of Female Pelvic Organ Descent on Transperineal Ultrasound: Model Development and Validation.

Wu S, Wu J, Xu Y, Tan J, Wang R, Zhang X

pubmed logopapersJun 28 2025
Transperineal ultrasound (TPUS) is a widely used tool for evaluating female pelvic organ prolapse (POP), but its accurate interpretation relies on experience, causing diagnostic variability. This study aims to develop and validate a multi-task deep learning model to automate POP assessment using TPUS images. TPUS images from 1340 female patients (January-June 2023) were evaluated by two experienced physicians. The presence and severity of cystocele, uterine prolapse, rectocele, and excessive mobility of perineal body (EMoPB) were documented. After preprocessing, 1072 images were used for training and 268 for validation. The model used ResNet34 as the feature extractor and four parallel fully connected layers to predict the conditions. Model performance was assessed using confusion matrix and area under the curve (AUC). Gradient-weighted class activation mapping (Grad-CAM) visualized the model's focus areas. The model demonstrated strong diagnostic performance, with accuracies and AUC values as follows: cystocele, 0.869 (95% CI, 0.824-0.905) and 0.947 (95% CI, 0.930-0.962); uterine prolapse, 0.799 (95% CI, 0.746-0.842) and 0.931 (95% CI, 0.911-0.948); rectocele, 0.978 (95% CI, 0.952-0.990) and 0.892 (95% CI, 0.849-0.927); and EMoPB, 0.869 (95% CI, 0.824-0.905) and 0.942 (95% CI, 0.907-0.967). Grad-CAM heatmaps revealed that the model's focus areas were consistent with those observed by human experts. This study presents a multi-task deep learning model for automated POP assessment using TPUS images, showing promising efficacy and potential to benefit a broader population of women.

Developing ultrasound-based machine learning models for accurate differentiation between sclerosing adenosis and invasive ductal carcinoma.

Liu G, Yang N, Qu Y, Chen G, Wen G, Li G, Deng L, Mai Y

pubmed logopapersJun 28 2025
This study aimed to develop a machine learning model using breast ultrasound images to improve the non-invasive differential diagnosis between Sclerosing Adenosis (SA) and Invasive Ductal Carcinoma (IDC). 2046 ultrasound images from 772 SA and IDC patients were collected, Regions of Interest (ROI) were delineated, and features were extracted. The dataset was split into training and test cohorts, and feature selection was performed by correlation coefficients and Recursive Feature Elimination. 10 classifiers with Grid Search and 5-fold cross-validation were applied during model training. Receiver Operating Characteristic (ROC) curve and Youden index were used to model evaluation. SHapley Additive exPlanations (SHAP) was employed for model interpretation. Another 224 ROIs of 84 patients from other hospitals were used for external validation. For the ROI-level model, XGBoost with 18 features achieved an area under the curve (AUC) of 0.9758 (0.9654-0.9847) in the test cohort and 0.9906 (0.9805-0.9973) in the validation cohort. For the patient-level model, logistic regression with 9 features achieved an AUC of 0.9653 (0.9402-0.9859) in the test cohort and 0.9846 (0.9615-0.9978) in the validation cohort. The feature "Original shape Major Axis Length" was identified as the most important, with its value positively correlated with a higher likelihood of the sample being IDC. Feature contributions for specific ROIs were visualized as well. We developed explainable, ultrasound-based machine learning models with high performance for differentiating SA and IDC, offering a potential non-invasive tool for improved differential diagnosis. Question Accurately distinguishing between sclerosing adenosis (SA) and invasive ductal carcinoma (IDC) in a non-invasive manner has been a diagnostic challenge. Findings Explainable, ultrasound-based machine learning models with high performance were developed for differentiating SA and IDC, and validated well in external validation cohort. Critical relevance These models provide non-invasive tools to reduce misdiagnoses of SA and improve early detection for IDC.

Identifying visible tissue in intraoperative ultrasound: a method and application.

Weld A, Dixon L, Dyck M, Anichini G, Ranne A, Camp S, Giannarou S

pubmed logopapersJun 28 2025
Intraoperative ultrasound scanning is a demanding visuotactile task. It requires operators to simultaneously localise the ultrasound perspective and manually perform slight adjustments to the pose of the probe, making sure not to apply excessive force or breaking contact with the tissue, while also characterising the visible tissue. To analyse the probe-tissue contact, an iterative filtering and topological method is proposed to identify the underlying visible tissue, which can be used to detect acoustic shadow and construct confidence maps of perceptual salience. For evaluation, datasets containing both in vivo and medical phantom data are created. A suite of evaluations is performed, including an evaluation of acoustic shadow classification. Compared to an ablation, deep learning, and statistical method, the proposed approach achieves superior classification on in vivo data, achieving an <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>F</mi> <mi>β</mi></msub> </math> score of 0.864, in comparison with 0.838, 0.808, and 0.808. A novel framework for evaluating the confidence estimation of probe-tissue contact is created. The phantom data are captured specifically for this, and comparison is made against two established methods. The proposed method produced the superior response, achieving an average normalised root-mean-square error of 0.168, in comparison with 1.836 and 4.542. Evaluation is also extended to determine the algorithm's robustness to parameter perturbation, speckle noise, data distribution shift, and capability for guiding a robotic scan. The results of this comprehensive set of experiments justify the potential clinical value of the proposed algorithm, which can be used to support clinical training and robotic ultrasound automation.

Non-contrast computed tomography radiomics model to predict benign and malignant thyroid nodules with lobe segmentation: A dual-center study.

Wang H, Wang X, Du YS, Wang Y, Bai ZJ, Wu D, Tang WL, Zeng HL, Tao J, He J

pubmed logopapersJun 28 2025
Accurate preoperative differentiation of benign and malignant thyroid nodules is critical for optimal patient management. However, conventional imaging modalities present inherent diagnostic limitations. To develop a non-contrast computed tomography-based machine learning model integrating radiomics and clinical features for preoperative thyroid nodule classification. This multicenter retrospective study enrolled 272 patients with thyroid nodules (376 thyroid lobes) from center A (May 2021-April 2024), using histopathological findings as the reference standard. The dataset was stratified into a training cohort (264 lobes) and an internal validation cohort (112 lobes). Additional prospective temporal (97 lobes, May-August 2024, center A) and external multicenter (81 lobes, center B) test cohorts were incorporated to enhance generalizability. Thyroid lobes were segmented along the isthmus midline, with segmentation reliability confirmed by an intraclass correlation coefficient (≥ 0.80). Radiomics feature extraction was performed using Pearson correlation analysis followed by least absolute shrinkage and selection operator regression with 10-fold cross-validation. Seven machine learning algorithms were systematically evaluated, with model performance quantified through the area under the receiver operating characteristic curve (AUC), Brier score, decision curve analysis, and DeLong test for comparison with radiologists interpretations. Model interpretability was elucidated using SHapley Additive exPlanations (SHAP). The extreme gradient boosting model demonstrated robust diagnostic performance across all datasets, achieving AUCs of 0.899 [95% confidence interval (CI): 0.845-0.932] in the training cohort, 0.803 (95%CI: 0.715-0.890) in internal validation, 0.855 (95%CI: 0.775-0.935) in temporal testing, and 0.802 (95%CI: 0.664-0.939) in external testing. These results were significantly superior to radiologists assessments (AUCs: 0.596, 0.529, 0.558, and 0.538, respectively; <i>P</i> < 0.001 by DeLong test). SHAP analysis identified radiomic score, age, tumor size stratification, calcification status, and cystic components as key predictive features. The model exhibited excellent calibration (Brier scores: 0.125-0.144) and provided significant clinical net benefit at decision thresholds exceeding 20%, as evidenced by decision curve analysis. The non-contrast computed tomography-based radiomics-clinical fusion model enables robust preoperative thyroid nodule classification, with SHAP-driven interpretability enhancing its clinical applicability for personalized decision-making.

Pulmonary hypertension: diagnostic aspects-what is the role of imaging?

Ali HJ, Guha A

pubmed logopapersJun 27 2025
The role of imaging in diagnosis of pulmonary hypertension is multifaceted, spanning from estimation of pulmonary arterial pressures, understanding pulmonary artery-right ventricular interaction, and identification of the cause. The purpose of this review is to provide a comprehensive overview of multimodality imaging in evaluation of pulmonary hypertension as well as the novel applications of imaging techniques that have improved our detection and understanding of pulmonary hypertension. There are diverse imaging modalities available for comprehensive assessment of pulmonary hypertension that are expanding with new tracers (e.g., hyperpolarized xenon gas, 129Xe) and imaging techniques (C-arm cone-bean computed tomography). Artificial intelligence applications may improve efficiency and accuracy of screening for pulmonary hypertension as well as further characterize pulmonary vasculopathies using computed tomography of the chest. In the face of increasing imaging options, a "value-based imaging" approach should be adopted to reduce unnecessary burden on the patient and the healthcare system without compromising the accuracy and completeness of diagnostic assessment. Future studies are needed to optimize use of multimodality imaging and artificial intelligence in comprehensive evaluation of patients with pulmonary hypertension.

Quantifying Sagittal Craniosynostosis Severity: A Machine Learning Approach With CranioRate.

Tao W, Somorin TJ, Kueper J, Dixon A, Kass N, Khan N, Iyer K, Wagoner J, Rogers A, Whitaker R, Elhabian S, Goldstein JA

pubmed logopapersJun 27 2025
ObjectiveTo develop and validate machine learning (ML) models for objective and comprehensive quantification of sagittal craniosynostosis (SCS) severity, enhancing clinical assessment, management, and research.DesignA cross-sectional study that combined the analysis of computed tomography (CT) scans and expert ratings.SettingThe study was conducted at a children's hospital and a major computer imaging institution. Our survey collected expert ratings from participating surgeons.ParticipantsThe study included 195 patients with nonsyndromic SCS, 221 patients with nonsyndromic metopic craniosynostosis (CS), and 178 age-matched controls. Fifty-four craniofacial surgeons participated in rating 20 patients head CT scans.InterventionsComputed tomography scans for cranial morphology assessment and a radiographic diagnosis of nonsyndromic SCS.Main OutcomesAccuracy of the proposed Sagittal Severity Score (SSS) in predicting expert ratings compared to cephalic index (CI). Secondary outcomes compared Likert ratings with SCS status, the predictive power of skull-based versus skin-based landmarks, and assessments of an unsupervised ML model, the Cranial Morphology Deviation (CMD), as an alternative without ratings.ResultsThe SSS achieved significantly higher accuracy in predicting expert responses than CI (<i>P</i> < .05). Likert ratings outperformed SCS status in supervising ML models to quantify within-group variations. Skin-based landmarks demonstrated equivalent predictive power as skull landmarks (<i>P</i> < .05, threshold 0.02). The CMD demonstrated a strong correlation with the SSS (Pearson coefficient: 0.92, Spearman coefficient: 0.90, <i>P</i> < .01).ConclusionsThe SSS and CMD can provide accurate, consistent, and comprehensive quantification of SCS severity. Implementing these data-driven ML models can significantly advance CS care through standardized assessments, enhanced precision, and informed surgical planning.

Artificial intelligence in coronary CT angiography: transforming the diagnosis and risk stratification of atherosclerosis.

Irannejad K, Mafi M, Krishnan S, Budoff MJ

pubmed logopapersJun 27 2025
Coronary CT Angiography (CCTA) is essential for assessing atherosclerosis and coronary artery disease, aiding in early detection, risk prediction, and clinical assessment. However, traditional CCTA interpretation is limited by observer variability, time inefficiency, and inconsistent plaque characterization. AI has emerged as a transformative tool, enhancing diagnostic accuracy, workflow efficiency, and risk prediction for major adverse cardiovascular events (MACE). Studies show that AI improves stenosis detection by 27%, inter-reader agreement by 30%, and reduces reporting times by 40%, thereby addressing key limitations of manual interpretation. Integrating AI with multimodal imaging (e.g., FFR-CT, PET-CT) further enhances ischemia detection by 28% and lesion classification by 35%, providing a more comprehensive cardiovascular evaluation. This review synthesizes recent advancements in CCTA-AI automation, risk stratification, and precision diagnostics while critically analyzing data quality, generalizability, ethics, and regulation challenges. Future directions, including real-time AI-assisted triage, cloud-based diagnostics, and AI-driven personalized medicine, are explored for their potential to revolutionize clinical workflows and optimize patient outcomes.
Page 43 of 1301294 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.