Sort by:
Page 43 of 93924 results

MDAL: Modality-difference-based active learning for multimodal medical image analysis via contrastive learning and pointwise mutual information.

Wang H, Jin Q, Du X, Wang L, Guo Q, Li H, Wang M, Song Z

pubmed logopapersJul 1 2025
Multimodal medical images reveal different characteristics of the same anatomy or lesion, offering significant clinical value. Deep learning has achieved widespread success in medical image analysis with large-scale labeled datasets. However, annotating medical images is expensive and labor-intensive for doctors, and the variations between different modalities further increase the annotation cost for multimodal images. This study aims to minimize the annotation cost for multimodal medical image analysis. We proposes a novel active learning framework MDAL based on modality differences for multimodal medical images. MDAL quantifies the sample-wise modality differences through pointwise mutual information estimated by multimodal contrastive learning. We hypothesize that samples with larger modality differences are more informative for annotation and further propose two sampling strategies based on these differences: MaxMD and DiverseMD. Moreover, MDAL could select informative samples in one shot without initial labeled data. We evaluated MDAL on public brain glioma and meningioma segmentation datasets and an in-house ovarian cancer classification dataset. MDAL outperforms other advanced active learning competitors. Besides, when using only 20%, 20%, and 15% of labeled samples in these datasets, MDAL reaches 99.6%, 99.9%, and 99.3% of the performance of supervised training with full labeled dataset, respectively. The results show that our proposed MDAL could significantly reduce the annotation cost for multimodal medical image analysis. We expect MDAL could be further extended to other multimodal medical data for lower annotation costs.

Quantitative Ischemic Lesions of Portable Low-Field Strength MRI Using Deep Learning-Based Super-Resolution.

Bian Y, Wang L, Li J, Yang X, Wang E, Li Y, Liu Y, Xiang L, Yang Q

pubmed logopapersJul 1 2025
Deep learning-based synthetic super-resolution magnetic resonance imaging (SynthMRI) may improve the quantitative lesion performance of portable low-field strength magnetic resonance imaging (LF-MRI). The aim of this study is to evaluate whether SynthMRI improves the diagnostic performance of LF-MRI in assessing ischemic lesions. We retrospectively included 178 stroke patients and 104 healthy controls with both LF-MRI and high-field strength magnetic resonance imaging (HF-MRI) examinations. Using HF-MRI as the ground truth, the deep learning-based super-resolution framework (SCUNet [Swin-Conv-UNet]) was pretrained using large-scale open-source data sets to generate SynthMRI images from LF-MRI images. Participants were split into a training set (64.2%) to fine-tune the pretrained SCUNet, and a testing set (35.8%) to evaluate the performance of SynthMRI. Sensitivity and specificity of LF-MRI and SynthMRI were assessed. Agreement with HF-MRI for Alberta Stroke Program Early CT Score in the anterior and posterior circulation (diffusion-weighted imaging-Alberta Stroke Program Early CT Score and diffusion-weighted imaging-posterior circulation Alberta Stroke Program Early CT Score) was evaluated using intraclass correlation coefficients (ICCs). Agreement with HF-MRI for lesion volume and mean apparent diffusion coefficient (ADC) within lesions was assessed using both ICCs and Pearson correlation coefficients. SynthMRI demonstrated significantly higher sensitivity and specificity than LF-MRI (89.0% [83.3%-94.6%] versus 77.1% [69.5%-84.7%]; <i>P</i><0.001 and 91.3% [84.7%-98.0%] versus 71.0% [60.3%-81.7%]; <i>P</i><0.001, respectively). The ICCs of diffusion-weighted imaging-Alberta Stroke Program Early CT Score between SynthMRI and HF-MRI were also better than that between LF-MRI and HF-MRI (0.952 [0.920-0.972] versus 0.797 [0.678-0.876], <i>P</i><0.001). For lesion volume and mean apparent diffusion coefficient within lesions, SynthMRI showed significantly higher agreement (<i>P</i><0.001) with HF-MRI (ICC>0.85, <i>r</i>>0.78) than LF-MRI (ICC>0.45, <i>r</i>>0.35). Furthermore, for lesions during various poststroke phases, SynthMRI exhibited significantly higher agreement with HF-MRI than LF-MRI during the early hyperacute and subacute phases. SynthMRI demonstrates high agreement with HF-MRI in detecting and quantifying ischemic lesions and is better than LF-MRI, particularly for lesions during the early hyperacute and subacute phases.

Regression modeling with convolutional neural network for predicting extent of resection from preoperative MRI in giant pituitary adenomas: a pilot study.

Patel BK, Tariciotti L, DiRocco L, Mandile A, Lohana S, Rodas A, Zohdy YM, Maldonado J, Vergara SM, De Andrade EJ, Revuelta Barbero JM, Reyes C, Solares CA, Garzon-Muvdi T, Pradilla G

pubmed logopapersJul 1 2025
Giant pituitary adenomas (GPAs) are challenging skull base tumors due to their size and proximity to critical neurovascular structures. Achieving gross-total resection (GTR) can be difficult, and residual tumor burden is commonly reported. This study evaluated the ability of convolutional neural networks (CNNs) to predict the extent of resection (EOR) from preoperative MRI with the goals of enhancing surgical planning, improving preoperative patient counseling, and enhancing multidisciplinary postoperative coordination of care. A retrospective study of 100 consecutive patients with GPAs was conducted. Patients underwent surgery via the endoscopic endonasal transsphenoidal approach. CNN models were trained on DICOM images from preoperative MR images to predict EOR, using a split of 80 patients for training and 20 for validation. The models included different architectural modules to refine image selection and predict EOR based on tumor-contained images in various anatomical planes. The model design, training, and validation were conducted in a local environment in Python using the TensorFlow machine learning system. The median preoperative tumor volume was 19.4 cm3. The median EOR was 94.5%, with GTR achieved in 49% of cases. The CNN model showed high predictive accuracy, especially when analyzing images from the coronal plane, with a root mean square error of 2.9916 and a mean absolute error of 2.6225. The coefficient of determination (R2) was 0.9823, indicating excellent model performance. CNN-based models may effectively predict the EOR for GPAs from preoperative MRI scans, offering a promising tool for presurgical assessment and patient counseling. Confirmatory studies with large patient samples are needed to definitively validate these findings.

Novel artificial intelligence approach in neurointerventional practice: Preliminary findings on filter movement and ischemic lesions in carotid artery stenting.

Sagawa H, Sakakura Y, Hanazawa R, Takahashi S, Wakabayashi H, Fujii S, Fujita K, Hirai S, Hirakawa A, Kono K, Sumita K

pubmed logopapersJul 1 2025
Embolic protection devices (EPDs) used during carotid artery stenting (CAS) are crucial in reducing ischemic complications. Although minimizing the filter-type EPD movement is considered important, limited research has demonstrated this practice. We used an artificial intelligence (AI)-based device recognition technology to investigate the correlation between filter movements and ischemic complications. We retrospectively studied 28 consecutive patients who underwent CAS using FilterWire EZ (Boston Scientific, Marlborough, MA, USA) from April 2022 to September 2023. Clinical data, procedural videos, and postoperative magnetic resonance imaging were collected. An AI-based device detection function in the Neuro-Vascular Assist (iMed Technologies, Tokyo, Japan) was used to quantify the filter movement. Multivariate proportional odds model analysis was performed to explore the correlations between postoperative diffusion-weighted imaging (DWI) hyperintense lesions and potential ischemic risk factors, including filter movement. In total, 23 patients had sufficient information and were eligible for quantitative analysis. Fourteen patients (60.9 %) showed postoperative DWI hyperintense lesions. Multivariate analysis revealed significant associations between filter movement distance (odds ratio, 1.01; 95 % confidence interval, 1.00-1.02; p = 0.003) and high-intensity signals in time-of-flight magnetic resonance angiography with DWI hyperintense lesions. Age, symptomatic status, and operative time were not significantly correlated. Increased filter movement during CAS was correlated with a higher incidence of postoperative DWI hyperintense lesions. AI-based quantitative evaluation of endovascular techniques may enable demonstration of previously unproven recommendations. To the best of our knowledge, this is the first study to use an AI system for quantitative evaluation to address real-world clinical issues.

Application and optimization of the U-Net++ model for cerebral artery segmentation based on computed tomographic angiography images.

Kim H, Seo KH, Kim K, Shim J, Lee Y

pubmed logopapersJul 1 2025
Accurate segmentation of cerebral arteries on computed tomography angiography (CTA) images is essential for the diagnosis and management of cerebrovascular diseases, including ischemic stroke. This study implemented a deep learning-based U-Net++ model for cerebral artery segmentation in CTA images, focusing on optimizing pruning levels by analyzing the trade-off between segmentation performance and computational cost. Dual-energy CTA and direct subtraction CTA datasets were utilized to segment the internal carotid and vertebral arteries in close proximity to the bone. We implemented four pruning levels (L1-L4) in the U-Net++ model and evaluated the segmentation performance using accuracy, intersection over union, F1-score, boundary F1-score, and Hausdorff distance. Statistical analyses were conducted to assess the significance of segmentation performance differences across pruning levels. In addition, we measured training and inference times to evaluate the trade-off between segmentation performance and computational efficiency. Applying deep supervision improved segmentation performance across all factors. While the L4 pruning level achieved the highest segmentation performance, L3 significantly reduced training and inference times (by an average of 51.56 % and 22.62 %, respectively), while incurring only a small decrease in segmentation performance (7.08 %) compared to L4. These results suggest that L3 achieves an optimal balance between performance and computational cost. This study demonstrates that pruning levels in U-Net++ models can be optimized to reduce computational cost while maintaining effective segmentation performance. By simplifying deep learning models, this approach can improve the efficiency of cerebrovascular segmentation, contributing to faster and more accurate diagnoses in clinical settings.

Multimodal deep learning-based radiomics for meningioma consistency prediction: integrating T1 and T2 MRI in a multi-center study.

Lin H, Yue Y, Xie L, Chen B, Li W, Yang F, Zhang Q, Chen H

pubmed logopapersJul 1 2025
Meningioma consistency critically impacts surgical planning, as soft tumors are easier to resect than hard tumors. Current assessments of tumor consistency using MRI are subjective and lack quantitative accuracy. Integrating deep learning and radiomics could enhance the predictive accuracy of meningioma consistency. A retrospective study analyzed 204 meningioma patients from two centers: the Second Affiliated Hospital of Guangzhou Medical University and the Southern Theater Command Hospital PLA. Three models-a radiomics model (Rad_Model), a deep learning model (DL_Model), and a combined model (DLR_Model)-were developed. Model performance was evaluated using AUC, accuracy, sensitivity, specificity, and precision. The DLR_Model outperformed other models across all cohorts. In the training set, it achieved AUC 0.957, accuracy of 0.908, and precision of 0.965. In the external test cohort, it maintained superior performance with an AUC of 0.854, accuracy of 0.778, and precision of 0.893, surpassing both the Rad_Model (AUC = 0.768) and DL_Model (AUC = 0.720). Combining radiomics and deep learning features improved predictive performance and robustness. Our study introduced and evaluated a deep learning radiomics model (DLR-Model) to accurately predict the consistency of meningiomas, which has the potential to improve preoperative assessments and surgical planning.

Association of Psychological Resilience With Decelerated Brain Aging in Cognitively Healthy World Trade Center Responders.

Seeley SH, Fremont R, Schreiber Z, Morris LS, Cahn L, Murrough JW, Schiller D, Charney DS, Pietrzak RH, Perez-Rodriguez MM, Feder A

pubmed logopapersJul 1 2025
Despite their exposure to potentially traumatic stressors, the majority of World Trade Center (WTC) responders-those who worked on rescue, recovery, and cleanup efforts on or following September 11, 2001-have shown psychological resilience, never developing long-term psychopathology. Psychological resilience may be protective against the earlier age-related cognitive changes associated with posttraumatic stress disorder (PTSD) in this cohort. In the current study, we calculated the difference between estimated brain age from structural magnetic resonance imaging (MRI) data and chronological age in WTC responders who participated in a parent functional MRI study of resilience (<i>N</i> = 97). We hypothesized that highly resilient responders would show the least brain aging and explored associations between brain aging and psychological and cognitive measures. WTC responders screened for the absence of cognitive impairment were classified into 3 groups: a WTC-related PTSD group (<i>n</i> = 32), a Highly Resilient group without lifetime psychopathology despite high WTC-related exposure (<i>n</i> = 34), and a Lower WTC-Exposed control group also without lifetime psychopathology (<i>n</i> = 31). We used <i>BrainStructureAges</i>, a deep learning algorithm that estimates voxelwise age from T1-weighted MRI data to calculate decelerated (or accelerated) brain aging relative to chronological age. Globally, brain aging was decelerated in the Highly Resilient group and accelerated in the PTSD group, with a significant group difference (<i>p</i> = .021, Cohen's <i>d</i> = 0.58); the Lower WTC-Exposed control group exhibited no significant brain age gap or group difference. Lesser brain aging was associated with resilience-linked factors including lower emotional suppression, greater optimism, and better verbal learning. Cognitively healthy WTC responders show differences in brain aging related to resilience and PTSD.

Hybrid model integration with explainable AI for brain tumor diagnosis: a unified approach to MRI analysis and prediction.

Vamsidhar D, Desai P, Joshi S, Kolhar S, Deshpande N, Gite S

pubmed logopapersJul 1 2025
Effective treatment for brain tumors relies on accurate detection because this is a crucial health condition. Medical imaging plays a pivotal role in improving tumor detection and diagnosis in the early stage. This study presents two approaches to the tumor detection problem focusing on the healthcare domain. A combination of image processing, vision transformer (ViT), and machine learning algorithms is the first approach that focuses on analyzing medical images. The second approach is the parallel model integration technique, where we first integrate two pre-trained deep learning models, ResNet101, and Xception, followed by applying local interpretable model-agnostic explanations (LIME) to explain the model. The results obtained an accuracy of 98.17% for the combination of vision transformer, random forest and contrast-limited adaptive histogram equalization and 99. 67% for the parallel model integration (ResNet101 and Xception). Based on these results, this paper proposed the deep learning approach-parallel model integration technique as the most effective method. Future work aims to extend the model to multi-class classification for tumor type detection and improve model generalization for broader applicability.

The implementation of artificial intelligence in serial monitoring of post gamma knife vestibular schwannomas: A pilot study.

Singh M, Jester N, Lorr S, Briano A, Schwartz N, Mahajan A, Chiang V, Tommasini SM, Wiznia DH, Buono FD

pubmed logopapersJul 1 2025
Vestibular schwannomas (VS) are benign tumors that can lead to hearing loss, balance issues, and tinnitus. Gamma Knife Radiosurgery (GKS) is a common treatment for VS, aimed at halting tumor growth and preserving neurological function. Accurate monitoring of VS volume before and after GKS is essential for assessing treatment efficacy. To evaluate the accuracy of an artificial intelligence (AI) algorithm, originally developed to identify NF2-SWN-related VS, in segmenting non-NF2-SWN-related VS and detecting volume changes pre- and post-GKS. We hypothesize this AI algorithm, trained on NF2-SWN-related VS data, will accurately apply to non-NF2-SWN VS and VS treated with GKS. In this retrospective cohort study, we reviewed data from an established Gamma Knife database, identifying 16 patients who underwent GKS for VS and had pre- and post-GKS scans. Contrast-enhanced T1-weighted MRI scans were analyzed with both manual segmentation and the AI algorithm. DICE similarity coefficients were computed to compare AI and manual segmentations, and a paired t-test was used to assess statistical significance. Volume changes for pre- and post-GKS scans were calculated for both segmentation methods. The mean DICE score between AI and manual segmentations was 0.91 (range 0.79-0.97). Pre- and post-GKS DICE scores were 0.91 (range 0.79-0.97) and 0.92 (range 0.81-0.97), indicating high spatial overlap. AI-segmented VS volumes pre- and post-GKS were consistent with manual measurements, with high DICE scores indicating strong spatial overlap. The AI algorithm processed scans within 5 min, suggesting it offers a reliable, efficient alternative for clinical monitoring. DICE scores showed high similarity between manual and AI segmentations. The pre- and post-GKS VS volume percentage changes were also similar between manual and AI-segmented VS volumes, indicating that our AI algorithm can accurately detect changes in tumor growth.

Fully automatic anatomical landmark localization and trajectory planning for navigated external ventricular drain placement.

de Boer M, van Doormaal JAM, Köllen MH, Bartels LW, Robe PAJT, van Doormaal TPC

pubmed logopapersJul 1 2025
The aim of this study was to develop and validate a fully automatic anatomical landmark localization and trajectory planning method for external ventricular drain (EVD) placement using CT or MRI. The authors used 125 preoperative CT and 137 contrast-enhanced T1-weighted MRI scans to generate 3D surface meshes of patients' skin and ventricular systems. Seven anatomical landmarks were manually annotated to train a neural network for automatic landmark localization. The model's accuracy was assessed by calculating the mean Euclidian distance of predicted landmarks to the ground truth. Kocher's point and EVD trajectories were automatically calculated with the foramen of Monro as the target. Performance was evaluated using Kakarla grades, as assessed by 3 clinicians. Interobserver agreement was measured with Pearson correlation, and scores were aggregated using majority voting. Ordinal linear regressions were used to assess whether modality or placement side had an effect on Kakarla grades. The impact of landmark localization error on the final EVD plan was also evaluated. The automated landmark localization model achieved a mean error of 4.0 mm (SD 2.6 mm). Trajectory planning generated a trajectory for all patients, with a Kakarla grade of 1 in 92.9% of cases. Statistical analyses indicated a strong interobserver agreement and no significant differences between modalities (CT vs MRI) or EVD placement sides. The location of Kocher's point and the target point were significantly correlated to nasion landmark localization error, with median drifts of 9.38 mm (95% CI 1.94-19.16 mm) and 3.91 mm (95% CI 0.18-26.76 mm) for Kocher's point and the target point, respectively. The presented method was efficient and robust for landmark localization and accurate EVD trajectory planning. The short processing time thereby also provides a base for use in emergency settings.
Page 43 of 93924 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.