Sort by:
Page 426 of 4494481 results

Highly Undersampled MRI Reconstruction via a Single Posterior Sampling of Diffusion Models

Jin Liu, Qing Lin, Zhuang Xiong, Shanshan Shan, Chunyi Liu, Min Li, Feng Liu, G. Bruce Pike, Hongfu Sun, Yang Gao

arxiv logopreprintMay 13 2025
Incoherent k-space under-sampling and deep learning-based reconstruction methods have shown great success in accelerating MRI. However, the performance of most previous methods will degrade dramatically under high acceleration factors, e.g., 8$\times$ or higher. Recently, denoising diffusion models (DM) have demonstrated promising results in solving this issue; however, one major drawback of the DM methods is the long inference time due to a dramatic number of iterative reverse posterior sampling steps. In this work, a Single Step Diffusion Model-based reconstruction framework, namely SSDM-MRI, is proposed for restoring MRI images from highly undersampled k-space. The proposed method achieves one-step reconstruction by first training a conditional DM and then iteratively distilling this model. Comprehensive experiments were conducted on both publicly available fastMRI images and an in-house multi-echo GRE (QSM) subject. Overall, the results showed that SSDM-MRI outperformed other methods in terms of numerical metrics (PSNR and SSIM), qualitative error maps, image fine details, and latent susceptibility information hidden in MRI phase images. In addition, the reconstruction time for a 320*320 brain slice of SSDM-MRI is only 0.45 second, which is only comparable to that of a simple U-net, making it a highly effective solution for MRI reconstruction tasks.

Improving AI models for rare thyroid cancer subtype by text guided diffusion models.

Dai F, Yao S, Wang M, Zhu Y, Qiu X, Sun P, Qiu C, Yin J, Shen G, Sun J, Wang M, Wang Y, Yang Z, Sang J, Wang X, Sun F, Cai W, Zhang X, Lu H

pubmed logopapersMay 13 2025
Artificial intelligence applications in oncology imaging often struggle with diagnosing rare tumors. We identify significant gaps in detecting uncommon thyroid cancer types with ultrasound, where scarce data leads to frequent misdiagnosis. Traditional augmentation strategies do not capture the unique disease variations, hindering model training and performance. To overcome this, we propose a text-driven generative method that fuses clinical insights with image generation, producing synthetic samples that realistically reflect rare subtypes. In rigorous evaluations, our approach achieves substantial gains in diagnostic metrics, surpasses existing methods in authenticity and diversity measures, and generalizes effectively to other private and public datasets with various rare cancers. In this work, we demonstrate that text-guided image augmentation substantially enhances model accuracy and robustness for rare tumor detection, offering a promising avenue for more reliable and widespread clinical adoption.

Deep Learning-accelerated MRI in Body and Chest.

Rajamohan N, Bagga B, Bansal B, Ginocchio L, Gupta A, Chandarana H

pubmed logopapersMay 13 2025
Deep learning reconstruction (DLR) provides an elegant solution for MR acceleration while preserving image quality. This advancement is crucial for body imaging, which is frequently marred by the increased likelihood of motion-related artifacts. Multiple vendor-specific models focusing on T2, T1, and diffusion-weighted imaging have been developed for the abdomen, pelvis, and chest, with the liver and prostate being the most well-studied organ systems. Variational networks with supervised DL models, including data consistency layers and regularizers, are the most common DLR methods. The common theme for all single-center studies on this subject has been noninferior or superior image quality metrics and lesion conspicuity to conventional sequences despite significant acquisition time reduction. DLR also provides a potential for denoising, artifact reduction, increased resolution, and increased signal-noise ratio (SNR) and contrast-to-noise ratio (CNR) that can be balanced with acceleration benefits depending on the imaged organ system. Some specific challenges faced by DLR include slightly reduced lesion detection, cardiac motion-related signal loss, regional SNR variations, and variabilities in ADC measurements as reported in different organ systems. Continued investigations with large-scale multicenter prospective clinical validation of DLR to document generalizability and demonstrate noninferior diagnostic accuracy with histopathologic correlation are the need of the hour. The creation of vendor-neutral solutions, open data sharing, and diversifying training data sets are also critical to strengthening model robustness.

Evaluation of an artificial intelligence noise reduction tool for conventional X-ray imaging - a visual grading study of pediatric chest examinations at different radiation dose levels using anthropomorphic phantoms.

Hultenmo M, Pernbro J, Ahlin J, Bonnier M, Båth M

pubmed logopapersMay 13 2025
Noise reduction tools developed with artificial intelligence (AI) may be implemented to improve image quality and reduce radiation dose, which is of special interest in the more radiosensitive pediatric population. The aim of the present study was to examine the effect of the AI-based intelligent noise reduction (INR) on image quality at different dose levels in pediatric chest radiography. Anteroposterior and lateral images of two anthropomorphic phantoms were acquired with both standard noise reduction and INR at different dose levels. In total, 300 anteroposterior and 420 lateral images were included. Image quality was evaluated by three experienced pediatric radiologists. Gradings were analyzed with visual grading characteristics (VGC) resulting in area under the VGC curve (AUC<sub>VGC</sub>) values and associated confidence intervals (CI). Image quality of different anatomical structures and overall clinical image quality were statistically significantly better in the anteroposterior INR images than in the corresponding standard noise reduced images at each dose level. Compared with reference anteroposterior images at a dose level of 100% with standard noise reduction, the image quality of the anteroposterior INR images was graded as significantly better at dose levels of ≥ 80%. Statistical significance was also achieved at lower dose levels for some structures. The assessments of the lateral images showed similar trends but with fewer significant results. The results of the present study indicate that the AI-based INR may potentially be used to improve image quality at a specific dose level or to reduce dose and maintain the image quality in pediatric chest radiography.

Individual thigh muscle and proximal femoral features predict displacement in femoral neck Fractures: An AI-driven CT analysis.

Yoo JI, Kim HS, Kim DY, Byun DW, Ha YC, Lee YK

pubmed logopapersMay 13 2025
Hip fractures, particularly among the elderly, impose a significant public health burden due to increased morbidity and mortality. Femoral neck fractures, commonly resulting from low-energy falls, can lead to severe complications such as avascular necrosis, and often necessitate total hip arthroplasty. This study harnesses AI to enhance musculoskeletal assessments by performing automatic muscle segmentation on whole thigh CT scans and detailed cortical measurements using the StradView program. The primary aim is to improve the prediction and prevention of severe femoral neck fractures, ultimately supporting more effective rehabilitation and treatment strategies. This study measured anatomical features from whole thigh CT scans of 60 femoral neck fracture patients. An AI-driven individual muscle segmentation model (a dice score of 0.84) segmented 27 muscles in the thigh region, to calculate muscle volumes. Proximal femoral bone parameters were measured using StradView, including average cortical thickness, inner density and FWHM at four regions. Correlation analysis evaluated relationships between muscle features, cortical parameters, and fracture displacement. Machine learning models (Random Forest, SVM and Multi-layer Perceptron) predicted displacement using these variables. Correlation analysis showed significant associations between femoral neck displacement and trabecular density at the femoral neck/intertrochanter, as well as volumes of specific thigh muscles such as the Tensor fasciae latae. Machine learning models using a combined feature set of thigh muscle volumes and proximal femoral parameters performed best in predicting displacement, with the Random Forest model achieving an F1 score of 0.91 and SVM model 0.93. Decreased volumes of the Tensor fasciae latae, Rectus femoris, and Semimembranosus muscles, coupled with reduced trabecular density at the femoral neck and intertrochanter, were significantly associated with increased fracture displacement. Notably, our SVM model-integrating both muscle and femoral features-achieved the highest predictive performance. These findings underscore the critical importance of muscle strength and bone density in rehabilitation planning and highlight the potential of AI-driven predictive models for improving clinical outcomes in femoral neck fractures.

The automatic pelvic screw corridor planning for intact pelvises based on deep learning deformable registration.

Ju F, Chai X, Zhao J, Dong M

pubmed logopapersMay 13 2025
Percutaneous screw fixation technique in pelvic trauma surgery is an extremely challenging operation that typically requires a trial-and-error insertion process under the guidance of continuous intraoperative X-ray. This process can be simplified by utilizing surgical navigation systems. Understanding the complexity of the intraosseous pelvis corridor is essential for establishing the optimal screw corridor, which further facilitates preoperative planning and intraoperative application. Traditional screw corridor search algorithms necessitate traversing the entrance and exit areas of the screw and calculating the distance from the corridor axis to the bone surface to ascertain the location of the screw. This process is computationally complex, and manual measurement by the physician is time consuming, labor intensive, and empirically dependent. In this study, we propose an automated planning algorithm for pelvic screw corridors based on deep learning deformable registration technology, which can efficiently and accurately identify the optimal screw corridors. Compared to traditional methods, the innovations of this study include: (1) the introduction of corridor safety range constraints on screw positioning, which enhances search efficiency; (2) the application of deep learning deformable registration to facilitate the automatic annotation of the screw entrance and exit areas, as well as the safety range of the corridor; and (3) the development of a highly efficient algorithm for optimal corridor searching, quickly determining the corridor without traversing the entrance and exit areas and enhancing efficiency via a vector-based diameter calculation method. The whole framework of the algorithm consists of three key components: atlas generation module, deformable registration and optimal corridor searching strategy. In the experiments, we test the performance of the proposed algorithm on 198 intact pelvises for calculating the optimal corridor of anterior column corridor and S1 sacroiliac screws. The results show that the new algorithm can increase the corridor diameter by 2.1%-3.3% compared to manual measurements, while significantly reducing the average time from 1038s and 3398s to 18.9s and 26.7s on anterior column corridor and S1 sacroiliac corridor, respectively, compared to the traditional screw searching algorithm. This demonstrates the advantages of the algorithm in terms of efficiency and accuracy. However, the current method is validated only on intact pelvises; further research is required for pelvic fracture scenarios.

Deep learning based on ultrasound images to predict platinum resistance in patients with epithelial ovarian cancer.

Su C, Miao K, Zhang L, Dong X

pubmed logopapersMay 13 2025
The study aimed at developing and validating a deep learning (DL) model based on the ultrasound imaging for predicting the platinum resistance of patients with epithelial ovarian cancer (EOC). 392 patients were enrolled in this retrospective study who had been diagnosed with EOC between 2014 and 2020 and underwent pelvic ultrasound before initial treatment. A DL model was developed to predict patients' platinum resistance, and the model underwent evaluation through receiver-operating characteristic (ROC) curves, decision curve analysis (DCA), and calibration curve. The ROC curves showed that the area under the curve (AUC) of the DL model for predicting patients' platinum resistance in the internal and external test sets were 0.86 (95% CI 0.83-0.90) and 0.86 (95% CI 0.84-0.89), respectively. The model demonstrated high clinical value through clinical decision curve analysis and exhibited good calibration efficiency in the training cohort. Kaplan-Meier analyses showed that the model's optimal cutoff value successfully distinguished between patients at high and low risk of recurrence, with hazard ratios of 3.1 (95% CI 2.3-4.1, P < 0.0001) and 2.9 (95% CI 2.3-3.9; P < 0.0001) in the high-risk group of the internal and external test sets, serving as a prognostic indicator. The DL model based on ultrasound imaging can predict platinum resistance in patients with EOC and may support clinicians in making the most appropriate treatment decisions.

Development and validation of an early diagnosis model for severe mycoplasma pneumonia in children based on interpretable machine learning.

Xie S, Wu M, Shang Y, Tuo W, Wang J, Cai Q, Yuan C, Yao C, Xiang Y

pubmed logopapersMay 13 2025
Pneumonia is a major threat to the health of children, especially those under the age of five. Mycoplasma  pneumoniae infection is a core cause of pediatric pneumonia, and the incidence of severe mycoplasma pneumoniae pneumonia (SMPP) has increased in recent years. Therefore, there is an urgent need to establish an early warning model for SMPP to improve the prognosis of pediatric pneumonia. The study comprised 597 SMPP patients aged between 1 month and 18 years. Clinical data were selected through Lasso regression analysis, followed by the application of eight machine learning algorithms to develop early warning model. The accuracy of the model was assessed using validation and prospective cohort. To facilitate clinical assessment, the study simplified the indicators and constructed visualized simplified model. The clinical applicability of the model was evaluated by DCA and CIC curve. After variable selection, eight machine learning models were developed using age, sex and 21 serum indicators identified as predictive factors for SMPP. A Light Gradient Boosting Machine (LightGBM) model demonstrated strong performance, achieving AUC of 0.92 for prospective validation. The SHAP analysis was utilized to screen advantageous variables, which contains of serum S100A8/A9, tracheal computed tomography (CT), retinol-binding protein(RBP), platelet larger cell ratio(P-LCR) and CD4+CD25+Treg cell counts, for constructing a simplified model (SCRPT) to improve clinical applicability. The SCRPT diagnostic model exhibited favorable diagnostic efficacy (AUC > 0.8). Additionally, the study found that S100A8/A9 outperformed clinical inflammatory markers can also differentiate the severity of MPP. The SCRPT model consisting of five dominant variables (S100A8/A9, CT, RBP, PLCR and Treg cell) screened based on eight machine learning is expected to be a tool for early diagnosis of SMPP. S100A8/A9 can also be used as a biomarker for validity differentiation of SMPP when medical conditions are limited.

Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS) challenge results

Meritxell Riera-Marin, Sikha O K, Julia Rodriguez-Comas, Matthias Stefan May, Zhaohong Pan, Xiang Zhou, Xiaokun Liang, Franciskus Xaverius Erick, Andrea Prenner, Cedric Hemon, Valentin Boussot, Jean-Louis Dillenseger, Jean-Claude Nunes, Abdul Qayyum, Moona Mazher, Steven A Niederer, Kaisar Kushibar, Carlos Martin-Isla, Petia Radeva, Karim Lekadir, Theodore Barfoot, Luis C. Garcia Peraza Herrera, Ben Glocker, Tom Vercauteren, Lucas Gago, Justin Englemann, Joy-Marie Kleiss, Anton Aubanell, Andreu Antolin, Javier Garcia-Lopez, Miguel A. Gonzalez Ballester, Adrian Galdran

arxiv logopreprintMay 13 2025
Deep learning (DL) has become the dominant approach for medical image segmentation, yet ensuring the reliability and clinical applicability of these models requires addressing key challenges such as annotation variability, calibration, and uncertainty estimation. This is why we created the Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS), which highlights the critical role of multiple annotators in establishing a more comprehensive ground truth, emphasizing that segmentation is inherently subjective and that leveraging inter-annotator variability is essential for robust model evaluation. Seven teams participated in the challenge, submitting a variety of DL models evaluated using metrics such as Dice Similarity Coefficient (DSC), Expected Calibration Error (ECE), and Continuous Ranked Probability Score (CRPS). By incorporating consensus and dissensus ground truth, we assess how DL models handle uncertainty and whether their confidence estimates align with true segmentation performance. Our findings reinforce the importance of well-calibrated models, as better calibration is strongly correlated with the quality of the results. Furthermore, we demonstrate that segmentation models trained on diverse datasets and enriched with pre-trained knowledge exhibit greater robustness, particularly in cases deviating from standard anatomical structures. Notably, the best-performing models achieved high DSC and well-calibrated uncertainty estimates. This work underscores the need for multi-annotator ground truth, thorough calibration assessments, and uncertainty-aware evaluations to develop trustworthy and clinically reliable DL-based medical image segmentation models.

Fast cortical thickness estimation using deep learning-based anatomy segmentation and diffeomorphic registration.

Wu J, Zhou S

pubmed logopapersMay 13 2025
Accurately and efficiently estimating the cortical thickness from magnetic resonance images (MRIs) is crucial for neuroscientific studies and clinical applications with various large-scale datasets. Diffeomorphic registration-based cortical thickness estimation (DiReCT) is a prominent traditional method of calculating such measures directly from original MRIs by applying diffeomorphic registration on segmented tissues. However, it suffers from prolonged computational time and limited reproducibility, impediments to its application in large-scale studies or real-time environments. This paper proposes a framework for cortical thickness estimation using deep learning-based anatomy segmentation and diffeomorphic registration. The framework begins by applying a convolutional neural network (CNN) segmentation model to the original image, generating a segmentation map that accurately delineates the cortical boundaries. Subsequently, a pair of distance maps generated from the segmentation map is injected into an unsupervised learning-based registration network for fast and diffeomorphic registration. A novel algorithm based on diffeomorphisms of different time points is proposed to calculate the final thickness map. We systematically evaluated and compared our method with surface-based measures from FreeSurfer on two distinct datasets. The experimental results demonstrated a superior performance of the proposed method, surpassing the performance of DiReCT and DL+DiReCT in terms of time efficiency and consistency with FreeSurfer. Our code and pre-trained models are publicly available at: https://github.com/wujiong-hub/DL-CTE.git.
Page 426 of 4494481 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.