Sort by:
Page 42 of 54537 results

Adaptive Weighting Based Metal Artifact Reduction in CT Images.

Wang H, Wu Y, Wang Y, Wei D, Wu X, Ma J, Zheng Y

pubmed logopapersJun 1 2025
Against the metal artifact reduction (MAR) task in computed tomography (CT) imaging, most of the existing deep-learning-based approaches generally select a single Hounsfield unit (HU) window followed by a normalization operation to preprocess CT images. However, in practical clinical scenarios, different body tissues and organs are often inspected under varying window settings for good contrast. The methods trained on a fixed single window would lead to insufficient removal of metal artifacts when being transferred to deal with other windows. To alleviate this problem, few works have proposed to reconstruct the CT images under multiple-window configurations. Albeit achieving good reconstruction performance for different windows, they adopt to directly supervise each window learning in an equal weighting way based on the training set. To improve the learning flexibility and model generalizability, in this paper, we propose an adaptive weighting algorithm, called AdaW, for the multiple-window metal artifact reduction, which can be applied to different deep MAR network backbones. Specifically, we first formulate the multiple window learning task as a bi-level optimization problem. Then we derive an adaptive weighting optimization algorithm where the learning process for MAR under each window is automatically weighted via a learning-to-learn paradigm based on the training set and validation set. This rationality is finely substantiated through theoretical analysis. Based on different network backbones, experimental comparisons executed on five datasets with different body sites comprehensively validate the effectiveness of AdaW in helping improve the generalization performance as well as its good applicability. We will release the code at https://github.com/hongwang01/AdaW.

Ultra-Sparse-View Cone-Beam CT Reconstruction-Based Strictly Structure-Preserved Deep Neural Network in Image-Guided Radiation Therapy.

Song Y, Zhang W, Wu T, Luo Y, Shi J, Yang X, Deng Z, Qi X, Li G, Bai S, Zhao J, Zhong R

pubmed logopapersJun 1 2025
Radiation therapy is regarded as the mainstay treatment for cancer in clinic. Kilovoltage cone-beam CT (CBCT) images have been acquired for most treatment sites as the clinical routine for image-guided radiation therapy (IGRT). However, repeated CBCT scanning brings extra irradiation dose to the patients and decreases clinical efficiency. Sparse CBCT scanning is a possible solution to the problems mentioned above but at the cost of inferior image quality. To decrease the extra dose while maintaining the CBCT quality, deep learning (DL) methods are widely adopted. In this study, planning CT was used as prior information, and the corresponding strictly structure-preserved CBCT was simulated based on the attenuation information from the planning CT. We developed a hyper-resolution ultra-sparse-view CBCT reconstruction model, known as the planning CT-based strictly-structure-preserved neural network (PSSP-NET), using a generative adversarial network (GAN). This model utilized clinical CBCT projections with extremely low sampling rates for the rapid reconstruction of high-quality CBCT images, and its clinical performance was evaluated in head-and-neck cancer patients. Our experiments demonstrated enhanced performance and improved reconstruction speed.

Score-Based Diffusion Models With Self-Supervised Learning for Accelerated 3D Multi-Contrast Cardiac MR Imaging.

Liu Y, Cui ZX, Qin S, Liu C, Zheng H, Wang H, Zhou Y, Liang D, Zhu Y

pubmed logopapersJun 1 2025
Long scan time significantly hinders the widespread applications of three-dimensional multi-contrast cardiac magnetic resonance (3D-MC-CMR) imaging. This study aims to accelerate 3D-MC-CMR acquisition by a novel method based on score-based diffusion models with self-supervised learning. Specifically, we first establish a mapping between the undersampled k-space measurements and the MR images, utilizing a self-supervised Bayesian reconstruction network. Secondly, we develop a joint score-based diffusion model on 3D-MC-CMR images to capture their inherent distribution. The 3D-MC-CMR images are finally reconstructed using the conditioned Langenvin Markov chain Monte Carlo sampling. This approach enables accurate reconstruction without fully sampled training data. Its performance was tested on the dataset acquired by a 3D joint myocardial $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ mapping sequence. The $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ maps were estimated via a dictionary matching method from the reconstructed images. Experimental results show that the proposed method outperforms traditional compressed sensing and existing self-supervised deep learning MRI reconstruction methods. It also achieves high quality $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ parametric maps close to the reference maps, even at a high acceleration rate of 14.

CT-SDM: A Sampling Diffusion Model for Sparse-View CT Reconstruction Across Various Sampling Rates.

Yang L, Huang J, Yang G, Zhang D

pubmed logopapersJun 1 2025
Sparse views X-ray computed tomography has emerged as a contemporary technique to mitigate radiation dose. Because of the reduced number of projection views, traditional reconstruction methods can lead to severe artifacts. Recently, research studies utilizing deep learning methods has made promising progress in removing artifacts for Sparse-View Computed Tomography (SVCT). However, given the limitations on the generalization capability of deep learning models, current methods usually train models on fixed sampling rates, affecting the usability and flexibility of model deployment in real clinical settings. To address this issue, our study proposes a adaptive reconstruction method to achieve high-performance SVCT reconstruction at various sampling rate. Specifically, we design a novel imaging degradation operator in the proposed sampling diffusion model for SVCT (CT-SDM) to simulate the projection process in the sinogram domain. Thus, the CT-SDM can gradually add projection views to highly undersampled measurements to generalize the full-view sinograms. By choosing an appropriate starting point in diffusion inference, the proposed model can recover the full-view sinograms from various sampling rate with only one trained model. Experiments on several datasets have verified the effectiveness and robustness of our approach, demonstrating its superiority in reconstructing high-quality images from sparse-view CT scans across various sampling rates.

Evaluation of a Deep Learning Denoising Algorithm for Dose Reduction in Whole-Body Photon-Counting CT Imaging: A Cadaveric Study.

Dehdab R, Brendel JM, Streich S, Ladurner R, Stenzl B, Mueck J, Gassenmaier S, Krumm P, Werner S, Herrmann J, Nikolaou K, Afat S, Brendlin A

pubmed logopapersJun 1 2025
Photon Counting CT (PCCT) offers advanced imaging capabilities with potential for substantial radiation dose reduction; however, achieving this without compromising image quality remains a challenge due to increased noise at lower doses. This study aims to evaluate the effectiveness of a deep learning (DL)-based denoising algorithm in maintaining diagnostic image quality in whole-body PCCT imaging at reduced radiation levels, using real intraindividual cadaveric scans. Twenty-four cadaveric human bodies underwent whole-body CT scans on a PCCT scanner (NAEOTOM Alpha, Siemens Healthineers) at four different dose levels (100%, 50%, 25%, and 10% mAs). Each scan was reconstructed using both QIR level 2 and a DL algorithm (ClariCT.AI, ClariPi Inc.), resulting in 192 datasets. Objective image quality was assessed by measuring CT value stability, image noise, and contrast-to-noise ratio (CNR) across consistent regions of interest (ROIs) in the liver parenchyma. Two radiologists independently evaluated subjective image quality based on overall image clarity, sharpness, and contrast. Inter-rater agreement was determined using Spearman's correlation coefficient, and statistical analysis included mixed-effects modeling to assess objective and subjective image quality. Objective analysis showed that the DL denoising algorithm did not significantly alter CT values (p ≥ 0.9975). Noise levels were consistently lower in denoised datasets compared to the Original (p < 0.0001). No significant differences were observed between the 25% mAs denoised and the 100% mAs original datasets in terms of noise and CNR (p ≥ 0.7870). Subjective analysis revealed strong inter-rater agreement (r ≥ 0.78), with the 50% mAs denoised datasets rated superior to the 100% mAs original datasets (p < 0.0001) and no significant differences detected between the 25% mAs denoised and 100% mAs original datasets (p ≥ 0.9436). The DL denoising algorithm maintains image quality in PCCT imaging while enabling up to a 75% reduction in radiation dose. This approach offers a promising method for reducing radiation exposure in clinical PCCT without compromising diagnostic quality.

Deep Learning-Enhanced Ultra-high-resolution CT Imaging for Superior Temporal Bone Visualization.

Brockstedt L, Grauhan NF, Kronfeld A, Mercado MAA, Döge J, Sanner A, Brockmann MA, Othman AE

pubmed logopapersJun 1 2025
This study assesses the image quality of temporal bone ultra-high-resolution (UHR) Computed tomography (CT) scans in adults and children using hybrid iterative reconstruction (HIR) and a novel, vendor-specific deep learning-based reconstruction (DLR) algorithm called AiCE Inner Ear. In a retrospective, single-center study (February 1-July 30, 2023), UHR-CT scans of 57 temporal bones of 35 patients (5 children, 23 male) with at least one anatomical unremarkable temporal bone were included. There is an adult computed tomography dose index volume (CTDIvol 25.6 mGy) and a pediatric protocol (15.3 mGy). Images were reconstructed using HIR at normal resolution (0.5-mm slice thickness, 512² matrix) and UHR (0.25-mm, 1024² and 2048² matrix) as well as with a vendor-specific DLR advanced intelligent clear-IQ engine inner ear (AiCE Inner Ear) at UHR (0.25-mm, 1024² matrix). Three radiologists evaluated 18 anatomic structures using a 5-point Likert scale. Signal-to-noise (SNR) and contrast-to-noise ratio (CNR) were measured automatically. In the adult protocol subgroup (n=30; median age: 51 [11-89]; 19 men) and the pediatric protocol subgroup (n=5; median age: 2 [1-3]; 4 men), UHR-CT with DLR significantly improved subjective image quality (p<0.024), reduced noise (p<0.001), and increased CNR and SNR (p<0.001). DLR also enhanced visualization of key structures, including the tendon of the stapedius muscle (p<0.001), tympanic membrane (p<0.009), and basal aspect of the osseous spiral lamina (p<0.018). Vendor-specific DLR-enhanced UHR-CT significantly improves temporal bone image quality and diagnostic performance.

Deep learning-based acceleration of high-resolution compressed sense MR imaging of the hip.

Marka AW, Meurer F, Twardy V, Graf M, Ebrahimi Ardjomand S, Weiss K, Makowski MR, Gersing AS, Karampinos DC, Neumann J, Woertler K, Banke IJ, Foreman SC

pubmed logopapersJun 1 2025
To evaluate a Compressed Sense Artificial Intelligence framework (CSAI) incorporating parallel imaging, compressed sense (CS), and deep learning for high-resolution MRI of the hip, comparing it with standard-resolution CS imaging. Thirty-two patients with femoroacetabular impingement syndrome underwent 3 T MRI scans. Coronal and sagittal intermediate-weighted TSE sequences with fat saturation were acquired using CS (0.6 ×0.8 mm resolution) and CSAI (0.3 ×0.4 mm resolution) protocols in comparable acquisition times (7:49 vs. 8:07 minutes for both planes). Two readers systematically assessed the depiction of the acetabular and femoral cartilage (in five cartilage zones), labrum, ligamentum capitis femoris, and bone using a five-point Likert scale. Diagnostic confidence and abnormality detection were recorded and analyzed using the Wilcoxon signed-rank test. CSAI significantly improved the cartilage depiction across most cartilage zones compared to CS. Overall Likert scores were 4.0 ± 0.2 (CS) vs 4.2 ± 0.6 (CSAI) for reader 1 and 4.0 ± 0.2 (CS) vs 4.3 ± 0.6 (CSAI) for reader 2 (p ≤ 0.001). Diagnostic confidence increased from 3.5 ± 0.7 and 3.9 ± 0.6 (CS) to 4.0 ± 0.6 and 4.1 ± 0.7 (CSAI) for readers 1 and 2, respectively (p ≤ 0.001). More cartilage lesions were detected with CSAI, with significant improvements in diagnostic confidence in certain cartilage zones such as femoral zone C and D for both readers. Labrum and ligamentum capitis femoris depiction remained similar, while bone depiction was rated lower. No abnormalities detected in CS were missed in CSAI. CSAI provides high-resolution hip MR images with enhanced cartilage depiction without extending acquisition times, potentially enabling more precise hip cartilage assessment.

Effect of Deep Learning Image Reconstruction on Image Quality and Pericoronary Fat Attenuation Index.

Mei J, Chen C, Liu R, Ma H

pubmed logopapersJun 1 2025
To compare the image quality and fat attenuation index (FAI) of coronary artery CT angiography (CCTA) under different tube voltages between deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction V (ASIR-V). Three hundred one patients who underwent CCTA with automatic tube current modulation were prospectively enrolled and divided into two groups: 120 kV group and low tube voltage group. Images were reconstructed using ASIR-V level 50% (ASIR-V50%) and high-strength DLIR (DLIR-H). In the low tube voltage group, the voltage was selected according to Chinese BMI classification: 70 kV (BMI < 24 kg/m<sup>2</sup>), 80 kV (24 kg/m<sup>2</sup> ≤ BMI < 28 kg/m<sup>2</sup>), 100 kV (BMI ≥ 28 kg/m<sup>2</sup>). At the same tube voltage, the subjective and objective image quality, edge rise distance (ERD), and FAI between different algorithms were compared. Under different tube voltages, we used DLIR-H to compare the differences between subjective, objective image quality, and ERD. Compared with the 120 kV group, the DLIR-H image noise of 70 kV, 80 kV, and 100 kV groups increased by 36%, 25%, and 12%, respectively (all P < 0.001); contrast-to-noise ratio (CNR), subjective score, and ERD were similar (all P > 0.05). In the 70 kV, 80 kV, 100 kV, and 120 kV groups, compared with ASIR-V50%, DLIR-H image noise decreased by 50%, 53%, 47%, and 38-50%, respectively; CNR, subjective score, and FAI value increased significantly (all P < 0.001), ERD decreased. Compared with 120 kV tube voltage, the combination of DLIR-H and low tube voltage maintains image quality. At the same tube voltage, compared with ASIR-V, DLIR-H improves image quality and FAI value.

An Adaptive SCG-ECG Multimodal Gating Framework for Cardiac CTA.

Ganesh S, Abozeed M, Aziz U, Tridandapani S, Bhatti PT

pubmed logopapersJun 1 2025
Cardiovascular disease (CVD) is the leading cause of death worldwide. Coronary artery disease (CAD), a prevalent form of CVD, is typically assessed using catheter coronary angiography (CCA), an invasive, costly procedure with associated risks. While cardiac computed tomography angiography (CTA) presents a less invasive alternative, it suffers from limited temporal resolution, often resulting in motion artifacts that degrade diagnostic quality. Traditional ECG-based gating methods for CTA inadequately capture cardiac mechanical motion. To address this, we propose a novel multimodal approach that enhances CTA imaging by predicting cardiac quiescent periods using seismocardiogram (SCG) and ECG data, integrated through a weighted fusion (WF) approach and artificial neural networks (ANNs). We developed a regression-based ANN framework (r-ANN WF) designed to improve prediction accuracy and reduce computational complexity, which was compared with a classification-based framework (c-ANN WF), ECG gating, and US data. Our results demonstrate that the r-ANN WF approach improved overall diastolic and systolic cardiac quiescence prediction accuracy by 52.6% compared to ECG-based predictions, using ultrasound (US) as the ground truth, with an average prediction time of 4.83 ms. Comparative evaluations based on reconstructed CTA images show that both r-ANN WF and c-ANN WF offer diagnostic quality comparable to US-based gating, underscoring their clinical potential. Additionally, the lower computational complexity of r-ANN WF makes it suitable for real-time applications. This approach could enhance CTA's diagnostic quality, offering a more accurate and efficient method for CVD diagnosis and management.

Deep learning-enhanced zero echo time MRI for glenohumeral assessment in shoulder instability: a comparative study with CT.

Carretero-Gómez L, Fung M, Wiesinger F, Carl M, McKinnon G, de Arcos J, Mandava S, Arauz S, Sánchez-Lacalle E, Nagrani S, López-Alcorocho JM, Rodríguez-Íñigo E, Malpica N, Padrón M

pubmed logopapersJun 1 2025
To evaluate image quality and lesion conspicuity of zero echo time (ZTE) MRI reconstructed with deep learning (DL)-based algorithm versus conventional reconstruction and to assess DL ZTE performance against CT for bone loss measurements in shoulder instability. Forty-four patients (9 females; 33.5 ± 15.65 years) with symptomatic anterior glenohumeral instability and no previous shoulder surgery underwent ZTE MRI and CT on the same day. ZTE images were reconstructed with conventional and DL methods and post-processed for CT-like contrast. Two musculoskeletal radiologists, blinded to the reconstruction method, independently evaluated 20 randomized MR ZTE datasets with and without DL-enhancement for perceived signal-to-noise ratio, resolution, and lesion conspicuity at humerus and glenoid using a 4-point Likert scale. Inter-reader reliability was assessed using weighted Cohen's kappa (K). An ordinal logistic regression model analyzed Likert scores, with the reconstruction method (DL-enhanced vs. conventional) as the predictor. Glenoid track (GT) and Hill-Sachs interval (HSI) measurements were performed by another radiologist on both DL ZTE and CT datasets. Intermodal agreement was assessed through intraclass correlation coefficients (ICCs) and Bland-Altman analysis. DL ZTE MR bone images scored higher than conventional ZTE across all items, with significantly improved perceived resolution (odds ratio (OR) = 7.67, p = 0.01) and glenoid lesion conspicuity (OR = 25.12, p = 0.01), with substantial inter-rater agreement (K = 0.61 (0.38-0.83) to 0.77 (0.58-0.95)). Inter-modality assessment showed almost perfect agreement between DL ZTE MR and CT for all bone measurements (overall ICC = 0.99 (0.97-0.99)), with mean differences of 0.08 (- 0.80 to 0.96) mm for GT and - 0.07 (- 1.24 to 1.10) mm for HSI. DL-based reconstruction enhances ZTE MRI quality for glenohumeral assessment, offering osseous evaluation and quantification equivalent to gold-standard CT, potentially simplifying preoperative workflow, and reducing CT radiation exposure.
Page 42 of 54537 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.