Evaluation of a Deep Learning Denoising Algorithm for Dose Reduction in Whole-Body Photon-Counting CT Imaging: A Cadaveric Study.

Authors

Dehdab R,Brendel JM,Streich S,Ladurner R,Stenzl B,Mueck J,Gassenmaier S,Krumm P,Werner S,Herrmann J,Nikolaou K,Afat S,Brendlin A

Affiliations (3)

  • Department of Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany (R.D., J.M.B., B.S., J.M., S.G., P.K., S.W., J.H., K.N., S.A., A.B.). Electronic address: [email protected].
  • Department of Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany (R.D., J.M.B., B.S., J.M., S.G., P.K., S.W., J.H., K.N., S.A., A.B.).
  • Institute of Clinical Anatomy and Cell Analysis, Eberhard Karls University of Tuebingen, Elfriede-Aulhorn-Str 8, 72076, Tuebingen, Germany (S.S., R.L.).

Abstract

Photon Counting CT (PCCT) offers advanced imaging capabilities with potential for substantial radiation dose reduction; however, achieving this without compromising image quality remains a challenge due to increased noise at lower doses. This study aims to evaluate the effectiveness of a deep learning (DL)-based denoising algorithm in maintaining diagnostic image quality in whole-body PCCT imaging at reduced radiation levels, using real intraindividual cadaveric scans. Twenty-four cadaveric human bodies underwent whole-body CT scans on a PCCT scanner (NAEOTOM Alpha, Siemens Healthineers) at four different dose levels (100%, 50%, 25%, and 10% mAs). Each scan was reconstructed using both QIR level 2 and a DL algorithm (ClariCT.AI, ClariPi Inc.), resulting in 192 datasets. Objective image quality was assessed by measuring CT value stability, image noise, and contrast-to-noise ratio (CNR) across consistent regions of interest (ROIs) in the liver parenchyma. Two radiologists independently evaluated subjective image quality based on overall image clarity, sharpness, and contrast. Inter-rater agreement was determined using Spearman's correlation coefficient, and statistical analysis included mixed-effects modeling to assess objective and subjective image quality. Objective analysis showed that the DL denoising algorithm did not significantly alter CT values (p ≥ 0.9975). Noise levels were consistently lower in denoised datasets compared to the Original (p < 0.0001). No significant differences were observed between the 25% mAs denoised and the 100% mAs original datasets in terms of noise and CNR (p ≥ 0.7870). Subjective analysis revealed strong inter-rater agreement (r ≥ 0.78), with the 50% mAs denoised datasets rated superior to the 100% mAs original datasets (p < 0.0001) and no significant differences detected between the 25% mAs denoised and 100% mAs original datasets (p ≥ 0.9436). The DL denoising algorithm maintains image quality in PCCT imaging while enabling up to a 75% reduction in radiation dose. This approach offers a promising method for reducing radiation exposure in clinical PCCT without compromising diagnostic quality.

Topics

Deep LearningRadiation DosageTomography, X-Ray ComputedWhole Body ImagingJournal ArticleEvaluation Study

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.