Ultra-Sparse-View Cone-Beam CT Reconstruction-Based Strictly Structure-Preserved Deep Neural Network in Image-Guided Radiation Therapy.

Authors

Song Y,Zhang W,Wu T,Luo Y,Shi J,Yang X,Deng Z,Qi X,Li G,Bai S,Zhao J,Zhong R

Abstract

Radiation therapy is regarded as the mainstay treatment for cancer in clinic. Kilovoltage cone-beam CT (CBCT) images have been acquired for most treatment sites as the clinical routine for image-guided radiation therapy (IGRT). However, repeated CBCT scanning brings extra irradiation dose to the patients and decreases clinical efficiency. Sparse CBCT scanning is a possible solution to the problems mentioned above but at the cost of inferior image quality. To decrease the extra dose while maintaining the CBCT quality, deep learning (DL) methods are widely adopted. In this study, planning CT was used as prior information, and the corresponding strictly structure-preserved CBCT was simulated based on the attenuation information from the planning CT. We developed a hyper-resolution ultra-sparse-view CBCT reconstruction model, known as the planning CT-based strictly-structure-preserved neural network (PSSP-NET), using a generative adversarial network (GAN). This model utilized clinical CBCT projections with extremely low sampling rates for the rapid reconstruction of high-quality CBCT images, and its clinical performance was evaluated in head-and-neck cancer patients. Our experiments demonstrated enhanced performance and improved reconstruction speed.

Topics

Cone-Beam Computed TomographyRadiotherapy, Image-GuidedDeep LearningNeural Networks, ComputerImage Processing, Computer-AssistedJournal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.