Denoising of high-resolution 3D UTE-MR angiogram data using lightweight and efficient convolutional neural networks.
Tessema AW, Ambaye DT, Cho H
Tessema AW, Ambaye DT, Cho H
Zhang Q, Chuang C, Zhang S, Zhao Z, Wang K, Xu J, Sun J
Wang YH, Zhou HM, Wan L, Guo YC, Li YZ, Liu TA, Guo JX, Li DY, Chen T
Canals P, Garcia-Tornel A, Requena M, Jabłońska M, Li J, Balocco S, Díaz O, Tomasello A, Ribo M
Zhongpai Gao, Meng Zheng, Benjamin Planche, Anwesa Choudhuri, Terrence Chen, Ziyan Wu
Geng M, Zhu J, Hong R, Liu Q, Liang D, Liu Q
Zidane A, Shimshoni I
Vraka, A., Marfil-Trujillo, M., Ribas-Despuig, G., Flor-Arnal, S., Cerda-Alberich, L., Jimenez-Gomez, P., Jimenez-Pastor, A., Marti-Bonmati, L.
Dereskewicz, E., La Rosa, F., dos Santos Silva, J., Sizer, E., Kohli, A., Wynen, M., Mullins, W. A., Maggi, P., Levy, S., Onyemeh, K., Ayci, B., Solomon, A. J., Assländer, J., Al-Louzi, O., Reich, D. S., Sumowski, J. F., Beck, E. S.
K VRP, Hima Bindu C, Devi KRM
Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.
We respect your privacy. Unsubscribe at any time.