Sort by:
Page 4 of 1311301 results

Association of Psychological Resilience With Decelerated Brain Aging in Cognitively Healthy World Trade Center Responders.

Seeley SH, Fremont R, Schreiber Z, Morris LS, Cahn L, Murrough JW, Schiller D, Charney DS, Pietrzak RH, Perez-Rodriguez MM, Feder A

pubmed logopapersJul 1 2025
Despite their exposure to potentially traumatic stressors, the majority of World Trade Center (WTC) responders-those who worked on rescue, recovery, and cleanup efforts on or following September 11, 2001-have shown psychological resilience, never developing long-term psychopathology. Psychological resilience may be protective against the earlier age-related cognitive changes associated with posttraumatic stress disorder (PTSD) in this cohort. In the current study, we calculated the difference between estimated brain age from structural magnetic resonance imaging (MRI) data and chronological age in WTC responders who participated in a parent functional MRI study of resilience (<i>N</i> = 97). We hypothesized that highly resilient responders would show the least brain aging and explored associations between brain aging and psychological and cognitive measures. WTC responders screened for the absence of cognitive impairment were classified into 3 groups: a WTC-related PTSD group (<i>n</i> = 32), a Highly Resilient group without lifetime psychopathology despite high WTC-related exposure (<i>n</i> = 34), and a Lower WTC-Exposed control group also without lifetime psychopathology (<i>n</i> = 31). We used <i>BrainStructureAges</i>, a deep learning algorithm that estimates voxelwise age from T1-weighted MRI data to calculate decelerated (or accelerated) brain aging relative to chronological age. Globally, brain aging was decelerated in the Highly Resilient group and accelerated in the PTSD group, with a significant group difference (<i>p</i> = .021, Cohen's <i>d</i> = 0.58); the Lower WTC-Exposed control group exhibited no significant brain age gap or group difference. Lesser brain aging was associated with resilience-linked factors including lower emotional suppression, greater optimism, and better verbal learning. Cognitively healthy WTC responders show differences in brain aging related to resilience and PTSD.

A Deep Learning Model Based on High-Frequency Ultrasound Images for Classification of Different Stages of Liver Fibrosis.

Zhang L, Tan Z, Li C, Mou L, Shi YL, Zhu XX, Luo Y

pubmed logopapersJul 1 2025
To develop a deep learning model based on high-frequency ultrasound images to classify different stages of liver fibrosis in chronic hepatitis B patients. This retrospective multicentre study included chronic hepatitis B patients who underwent both high-frequency and low-frequency liver ultrasound examinations between January 2014 and August 2024 at six hospitals. Paired images were employed to train the HF-DL and the LF-DL models independently. Three binary tasks were conducted: (1) Significant Fibrosis (S0-1 vs. S2-4); (2) Advanced Fibrosis (S0-2 vs. S3-4); (3) Cirrhosis (S0-3 vs. S4). Hepatic pathological results constituted the ground truth for algorithm development and evaluation. The diagnostic value of high-frequency and low-frequency liver ultrasound images was compared across commonly used CNN networks. The HF-DL model performance was compared against the LF-DL model, FIB-4, APRI, and with SWE (external test set). The calibration of models was plotted. The clinical benefits were calculated. Subgroup analysis for patients with different characteristics (BMI, ALT, inflammation level, alcohol consumption level) was conducted. The HF-DL model demonstrated consistently superior diagnostic performance across all stages of liver fibrosis compared to the LF-DL model, FIB-4, APRI and SWE, particularly in classifying advanced fibrosis (0.93 [95% CI 0.90-0.95], 0.93 [95% CI 0.89-0.96], p < 0.01). The HF-DL model demonstrates significantly improved performance in both target patient detection and negative population exclusion. The HF-DL model based on high-frequency ultrasound images outperforms other routinely used non-invasive modalities across different stages of liver fibrosis, particularly in advanced fibrosis, and may offer considerable clinical value.

Agreement between Routine-Dose and Lower-Dose CT with and without Deep Learning-based Denoising for Active Surveillance of Solid Small Renal Masses: A Multiobserver Study.

Borgbjerg J, Breen BS, Kristiansen CH, Larsen NE, Medrud L, Mikalone R, Müller S, Naujokaite G, Negård A, Nielsen TK, Salte IM, Frøkjær JB

pubmed logopapersJul 1 2025
Purpose To assess the agreement between routine-dose (RD) and lower-dose (LD) contrast-enhanced CT scans, with and without Digital Imaging and Communications in Medicine-based deep learning-based denoising (DLD), in evaluating small renal masses (SRMs) during active surveillance. Materials and Methods In this retrospective study, CT scans from patients undergoing active surveillance for an SRM were included. Using a validated simulation technique, LD CT images were generated from the RD images to simulate 75% (LD75) and 90% (LD90) radiation dose reductions. Two additional LD image sets, in which the DLD was applied (LD75-DLD and LD90-DLD), were generated. Between January 2023 and June 2024, nine radiologists from three institutions independently evaluated 350 CT scans across five datasets for tumor size, tumor nearness to the collecting system (TN), and tumor shape irregularity (TSI), and interobserver reproducibility and agreement were assessed using the 95% limits of agreement with the mean (LOAM) and Gwet AC2 coefficient, respectively. Subjective and quantitative image quality assessments were also performed. Results The study sample included 70 patients (mean age, 73.2 years ± 9.2 [SD]; 48 male, 22 female). LD75 CT was found to be in agreement with RD scans for assessing SRM diameter, with a LOAM of ±2.4 mm (95% CI: 2.3, 2.6) for LD75 compared with ±2.2 mm (95% CI: 2.1, 2.4) for RD. However, a 90% dose reduction compromised reproducibility (LOAM ±3.0 mm; 95% CI: 2.8, 3.2). LD90-DLD preserved measurement reproducibility (LOAM ±2.4 mm; 95% CI: 2.3, 2.6). Observer agreement was comparable between TN and TSI assessments across all image sets, with no statistically significant differences identified (all comparisons <i>P</i> ≥ .35 for TN and <i>P</i> ≥ .02 for TSI; Holm-corrected significance threshold, <i>P</i> = .013). Subjective and quantitative image quality assessments confirmed that DLD effectively restored image quality at reduced dose levels: LD75-DLD had the highest overall image quality, significantly lower noise, and improved contrast-to-noise ratio compared with RD (<i>P</i> < .001). Conclusion A 75% reduction in radiation dose is feasible for SRM assessment in active surveillance using CT with a conventional iterative reconstruction technique, whereas applying DLD allows submillisievert dose reduction. <b>Keywords:</b> CT, Urinary, Kidney, Radiation Safety, Observer Performance, Technology Assessment <i>Supplemental material is available for this article.</i> © RSNA, 2025 See also commentary by Muglia in this issue.

Deep Learning for Detecting and Subtyping Renal Cell Carcinoma on Contrast-Enhanced CT Scans Using 2D Neural Network with Feature Consistency Techniques.

Gupta A, Dhanakshirur RR, Jain K, Garg S, Yadav N, Seth A, Das CJ

pubmed logopapersJul 1 2025
<b>Objective</b>  The aim of this study was to explore an innovative approach for developing deep learning (DL) algorithm for renal cell carcinoma (RCC) detection and subtyping on computed tomography (CT): clear cell RCC (ccRCC) versus non-ccRCC using two-dimensional (2D) neural network architecture and feature consistency modules. <b>Materials and Methods</b>  This retrospective study included baseline CT scans from 196 histopathologically proven RCC patients: 143 ccRCCs and 53 non-ccRCCs. Manual tumor annotations were performed on axial slices of corticomedullary phase images, serving as ground truth. After image preprocessing, the dataset was divided into training, validation, and testing subsets. The study tested multiple 2D DL architectures, with the FocalNet-DINO demonstrating highest effectiveness in detecting and classifying RCC. The study further incorporated spatial and class consistency modules to enhance prediction accuracy. Models' performance was evaluated using free-response receiver operating characteristic curves, recall rates, specificity, accuracy, F1 scores, and area under the curve (AUC) scores. <b>Results</b>  The FocalNet-DINO architecture achieved the highest recall rate of 0.823 at 0.025 false positives per image (FPI) for RCC detection. The integration of spatial and class consistency modules into the architecture led to 0.2% increase in recall rate at 0.025 FPI, along with improvements of 0.1% in both accuracy and AUC scores for RCC classification. These enhancements allowed detection of cancer in an additional 21 slices and reduced false positives in 126 slices. <b>Conclusion</b>  This study demonstrates high performance for RCC detection and classification using DL algorithm leveraging 2D neural networks and spatial and class consistency modules, to offer a novel, computationally simpler, and accurate DL approach to RCC characterization.

A quantitative tumor-wide analysis of morphological heterogeneity of colorectal adenocarcinoma.

Dragomir MP, Popovici V, Schallenberg S, Čarnogurská M, Horst D, Nenutil R, Bosman F, Budinská E

pubmed logopapersJul 1 2025
The intertumoral and intratumoral heterogeneity of colorectal adenocarcinoma (CRC) at the morphologic level is poorly understood. Previously, we identified morphological patterns associated with CRC molecular subtypes and their distinct molecular motifs. Here we aimed to evaluate the heterogeneity of these patterns across CRC. Three pathologists evaluated dominant, secondary, and tertiary morphology on four sections from four different FFPE blocks per tumor in a pilot set of 22 CRCs. An AI-based image analysis tool was trained on these tumors to evaluate the morphologic heterogeneity on an extended set of 161 stage I-IV primary CRCs (n = 644 H&E sections). We found that most tumors had two or three different dominant morphotypes and the complex tubular (CT) morphotype was the most common. The CT morphotype showed no combinatorial preferences. Desmoplastic (DE) morphotype was rarely dominant and rarely combined with other dominant morphotypes. Mucinous (MU) morphotype was mostly combined with solid/trabecular (TB) and papillary (PP) morphotypes. Most tumors showed medium or high heterogeneity, but no associations were found between heterogeneity and clinical parameters. A higher proportion of DE morphotype was associated with higher T-stage, N-stage, distant metastases, AJCC stage, and shorter overall survival (OS) and relapse-free survival (RFS). A higher proportion of MU morphotype was associated with higher grade, right side, and microsatellite instability (MSI). PP morphotype was associated with earlier T- and N-stage, absence of metastases, and improved OS and RFS. CT was linked to left side, lower grade, and better survival in stage I-III patients. MSI tumors showed higher proportions of MU and TB, and lower CT and PP morphotypes. These findings suggest that morphological shifts accompany tumor progression and highlight the need for extensive sampling and AI-based analysis. In conclusion, we observed unexpectedly high intratumoral morphological heterogeneity of CRC and found that it is not heterogeneity per se, but the proportions of morphologies that are associated with clinical outcomes.

Mechanically assisted non-invasive ventilation for liver SABR: Improve CBCT, treat more accurately.

Pierrard J, Audag N, Massih CA, Garcia MA, Moreno EA, Colot A, Jardinet S, Mony R, Nevez Marques AF, Servaes L, Tison T, den Bossche VV, Etume AW, Zouheir L, Ooteghem GV

pubmed logopapersJul 1 2025
Cone-beam computed tomography (CBCT) for image-guided radiotherapy (IGRT) during liver stereotactic ablative radiotherapy (SABR) is degraded by respiratory motion artefacts, potentially jeopardising treatment accuracy. Mechanically assisted non-invasive ventilation-induced breath-hold (MANIV-BH) can reduce these artefacts. This study compares MANIV-BH and free-breathing CBCTs regarding image quality, IGRT variability, automatic registration accuracy, and deep-learning auto-segmentation performance. Liver SABR CBCTs were presented blindly to 14 operators: 25 patients with FB and 25 with MANIV-BH. They rated CBCT quality and IGRT ease (rigid registration with planning CT). Interoperator IGRT variability was compared between FB and MANIV-BH. Automatic gross tumour volume (GTV) mapping accuracy was compared using automatic rigid registration and image-guided deformable registration. Deep-learning organ-at-risk (OAR) auto-segmentation was rated by an operator, who recorded the time dedicated for manual correction of these volumes. MANIV-BH significantly improved CBCT image quality ("Excellent"/"Good": 83.4 % versus 25.4 % with FB, p < 0.001), facilitated IGRT ("Very easy"/"Easy": 68.0 % versus 38.9 % with FB, p < 0.001), and reduced IGRT variability, particularly for trained operators (overall variability of 3.2 mm versus 4.6 mm with FB, p = 0.010). MANIV-BH improved deep-learning auto-segmentation performance (80.0 % rated "Excellent"/"Good" versus 4.0 % with FB, p < 0.001), and reduced median manual correction time by 54.2 % compared to FB (p < 0.001). However, automatic GTV mapping accuracy was not significantly different between MANIV-BH and FB. In liver SABR, MANIV-BH significantly improves CBCT quality, reduces interoperator IGRT variability, and enhances OAR auto-segmentation. Beyond being safe and effective for respiratory motion mitigation, MANIV increases accuracy during treatment delivery, although its implementation requires resources.

Intermuscular adipose tissue and lean muscle mass assessed with MRI in people with chronic back pain in Germany: a retrospective observational study.

Ziegelmayer S, Häntze H, Mertens C, Busch F, Lemke T, Kather JN, Truhn D, Kim SH, Wiestler B, Graf M, Kader A, Bamberg F, Schlett CL, Weiss JB, Schulz-Menger J, Ringhof S, Can E, Pischon T, Niendorf T, Lammert J, Schulze M, Keil T, Peters A, Hadamitzky M, Makowski MR, Adams L, Bressem K

pubmed logopapersJul 1 2025
Chronic back pain (CBP) affects over 80 million people in Europe, contributing to substantial healthcare costs and disability. Understanding modifiable risk factors, such as muscle composition, may aid in prevention and treatment. This study investigates the association between lean muscle mass (LMM) and intermuscular adipose tissue (InterMAT) with CBP using noninvasive whole-body magnetic resonance imaging (MRI). This cross-sectional analysis used whole-body MRI data from 30,868 participants in the German National Cohort (NAKO), collected between 1 May 2014 and 1 September 2019. CBP was defined as back pain persisting >3 months. LMM and InterMAT were quantified via MRI-based muscle segmentations using a validated deep learning model. Associations were analyzed using mixed logistic regression, adjusting for age, sex, diabetes, dyslipidemia, osteoporosis, osteoarthritis, physical activity, and study site. Among 27,518 participants (n = 12,193/44.3% female, n = 14,605/55.7% male; median age 49 years IQR 41; 57), 21.8% (n = 6003; n = 2999/50.0% female, n = 3004/50% male; median age 53 years IQR 46; 60) reported CBP, compared to 78.2% (n = 21,515; n = 9194/42.7% female, n = 12,321/57.3% male; median age 48 years IQR 39; 56) who did not. CBP prevalence was highest in those with low (<500 MET min/week) or high (>5000 MET min/week) self-reported physical activity levels (24.6% (n = 10,892) and 22.0% (n = 3800), respectively) compared to moderate (500-5000 MET min/week) levels (19.4% (n = 12,826); p < 0.0001). Adjusted analyses revealed that a higher InterMAT (OR 1.22 per 2-unit Z-score; 95% CI 1.13-1.30; p < 0.0001) was associated with an increased likelihood of chronic back pain (CBP), whereas higher lean muscle mass (LMM) (OR 0.87 per 2-unit Z-score; 95% CI 0.79-0.95; p = 0.003) was associated with a reduced likelihood of CBP. Stratified analyses confirmed these associations persisted in individuals with osteoarthritis (OA-CBP LMM: 22.9 cm<sup>3</sup>/kg/m; InterMAT: 7.53% vs OA-No CBP LMM: 24.3 cm<sup>3</sup>/kg/m; InterMAT: 6.96% both p < 0.0001) and osteoporosis (OP-CBP LMM: 20.9 cm<sup>3</sup>/kg/m; InterMAT: 8.43% vs OP-No CBP LMM: 21.3 cm<sup>3</sup>/kg/m; InterMAT: 7.9% p = 0.16 and p = 0.0019). Higher pain intensity (Pain Intensity Numerical Rating Scale ≥4) correlated with lower LMM (2-unit Z-score deviation = OR, 0.63; 95% CI, 0.57-0.70; p < 0.0001) and higher InterMAT (2-unit Z-score deviation = OR, 1.22; 95% CI, 1.13-1.30; p < 0.0001), independent of physical activity, osteoporosis and osteoarthritis. This large, population-based study highlights the associations of InterMAT and LMM with CBP. Given the limitations of the cross-sectional design, our findings can be seen as an impetus for further causal investigations within a broader, multidisciplinary framework to guide future research toward improved prevention and treatment. The NAKO is funded by the Federal Ministry of Education and Research (BMBF) [project funding reference numbers: 01ER1301A/B/C, 01ER1511D, 01ER1801A/B/C/D and 01ER2301A/B/C], federal states of Germany and the Helmholtz Association, the participating universities and the institutes of the Leibniz Association.

Prediction of PD-L1 expression in NSCLC patients using PET/CT radiomics and prognostic modelling for immunotherapy in PD-L1-positive NSCLC patients.

Peng M, Wang M, Yang X, Wang Y, Xie L, An W, Ge F, Yang C, Wang K

pubmed logopapersJul 1 2025
To develop a positron emission tomography/computed tomography (PET/CT)-based radiomics model for predicting programmed cell death ligand 1 (PD-L1) expression in non-small cell lung cancer (NSCLC) patients and estimating progression-free survival (PFS) and overall survival (OS) in PD-L1-positive patients undergoing first-line immunotherapy. We retrospectively analysed 143 NSCLC patients who underwent pretreatment <sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) PET/CT scans, of whom 86 were PD-L1-positive. Clinical data collected included gender, age, smoking history, Tumor-Node-Metastases (TNM) staging system, pathologic types, laboratory parameters, and PET metabolic parameters. Four machine learning algorithms-Bayes, logistic, random forest, and Supportsupport vector machine (SVM)-were used to build models. The predictive performance was validated using receiver operating characteristic (ROC) curves. Univariate and multivariate Cox analyses identified independent predictors of OS and PFS in PD-L1-positive expression patients undergoing immunotherapy, and a nomogram was created to predict OS. A total of 20 models were built for predicting PD-L1 expression. The clinical combined PET/CT radiomics model based on the SVM algorithm performed best (area under curve for training and test sets: 0.914 and 0.877, respectively). The Cox analyses showed that smoking history independently predicted PFS. SUVmean, monocyte percentage and white blood cell count were independent predictors of OS, and the nomogram was created to predict 1-year, 2-year, and 3-year OS based on these three factors. We developed PET/CT-based machine learning models to help predict PD-L1 expression in NSCLC patients and identified independent predictors of PFS and OS in PD-L1-positive patients receiving immunotherapy, thereby aiding precision treatment.

Novel artificial intelligence approach in neurointerventional practice: Preliminary findings on filter movement and ischemic lesions in carotid artery stenting.

Sagawa H, Sakakura Y, Hanazawa R, Takahashi S, Wakabayashi H, Fujii S, Fujita K, Hirai S, Hirakawa A, Kono K, Sumita K

pubmed logopapersJul 1 2025
Embolic protection devices (EPDs) used during carotid artery stenting (CAS) are crucial in reducing ischemic complications. Although minimizing the filter-type EPD movement is considered important, limited research has demonstrated this practice. We used an artificial intelligence (AI)-based device recognition technology to investigate the correlation between filter movements and ischemic complications. We retrospectively studied 28 consecutive patients who underwent CAS using FilterWire EZ (Boston Scientific, Marlborough, MA, USA) from April 2022 to September 2023. Clinical data, procedural videos, and postoperative magnetic resonance imaging were collected. An AI-based device detection function in the Neuro-Vascular Assist (iMed Technologies, Tokyo, Japan) was used to quantify the filter movement. Multivariate proportional odds model analysis was performed to explore the correlations between postoperative diffusion-weighted imaging (DWI) hyperintense lesions and potential ischemic risk factors, including filter movement. In total, 23 patients had sufficient information and were eligible for quantitative analysis. Fourteen patients (60.9 %) showed postoperative DWI hyperintense lesions. Multivariate analysis revealed significant associations between filter movement distance (odds ratio, 1.01; 95 % confidence interval, 1.00-1.02; p = 0.003) and high-intensity signals in time-of-flight magnetic resonance angiography with DWI hyperintense lesions. Age, symptomatic status, and operative time were not significantly correlated. Increased filter movement during CAS was correlated with a higher incidence of postoperative DWI hyperintense lesions. AI-based quantitative evaluation of endovascular techniques may enable demonstration of previously unproven recommendations. To the best of our knowledge, this is the first study to use an AI system for quantitative evaluation to address real-world clinical issues.
Page 4 of 1311301 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.