Sort by:
Page 4 of 18173 results

DSA-NRP: No-Reflow Prediction from Angiographic Perfusion Dynamics in Stroke EVT

Shreeram Athreya, Carlos Olivares, Ameera Ismail, Kambiz Nael, William Speier, Corey Arnold

arxiv logopreprintJun 20 2025
Following successful large-vessel recanalization via endovascular thrombectomy (EVT) for acute ischemic stroke (AIS), some patients experience a complication known as no-reflow, defined by persistent microvascular hypoperfusion that undermines tissue recovery and worsens clinical outcomes. Although prompt identification is crucial, standard clinical practice relies on perfusion magnetic resonance imaging (MRI) within 24 hours post-procedure, delaying intervention. In this work, we introduce the first-ever machine learning (ML) framework to predict no-reflow immediately after EVT by leveraging previously unexplored intra-procedural digital subtraction angiography (DSA) sequences and clinical variables. Our retrospective analysis included AIS patients treated at UCLA Medical Center (2011-2024) who achieved favorable mTICI scores (2b-3) and underwent pre- and post-procedure MRI. No-reflow was defined as persistent hypoperfusion (Tmax > 6 s) on post-procedural imaging. From DSA sequences (AP and lateral views), we extracted statistical and temporal perfusion features from the target downstream territory to train ML classifiers for predicting no-reflow. Our novel method significantly outperformed a clinical-features baseline(AUC: 0.7703 $\pm$ 0.12 vs. 0.5728 $\pm$ 0.12; accuracy: 0.8125 $\pm$ 0.10 vs. 0.6331 $\pm$ 0.09), demonstrating that real-time DSA perfusion dynamics encode critical insights into microvascular integrity. This approach establishes a foundation for immediate, accurate no-reflow prediction, enabling clinicians to proactively manage high-risk patients without reliance on delayed imaging.

DSA-NRP: No-Reflow Prediction from Angiographic Perfusion Dynamics in Stroke EVT

Shreeram Athreya, Carlos Olivares, Ameera Ismail, Kambiz Nael, William Speier, Corey Arnold

arxiv logopreprintJun 20 2025
Following successful large-vessel recanalization via endovascular thrombectomy (EVT) for acute ischemic stroke (AIS), some patients experience a complication known as no-reflow, defined by persistent microvascular hypoperfusion that undermines tissue recovery and worsens clinical outcomes. Although prompt identification is crucial, standard clinical practice relies on perfusion magnetic resonance imaging (MRI) within 24 hours post-procedure, delaying intervention. In this work, we introduce the first-ever machine learning (ML) framework to predict no-reflow immediately after EVT by leveraging previously unexplored intra-procedural digital subtraction angiography (DSA) sequences and clinical variables. Our retrospective analysis included AIS patients treated at UCLA Medical Center (2011-2024) who achieved favorable mTICI scores (2b-3) and underwent pre- and post-procedure MRI. No-reflow was defined as persistent hypoperfusion (Tmax > 6 s) on post-procedural imaging. From DSA sequences (AP and lateral views), we extracted statistical and temporal perfusion features from the target downstream territory to train ML classifiers for predicting no-reflow. Our novel method significantly outperformed a clinical-features baseline(AUC: 0.7703 $\pm$ 0.12 vs. 0.5728 $\pm$ 0.12; accuracy: 0.8125 $\pm$ 0.10 vs. 0.6331 $\pm$ 0.09), demonstrating that real-time DSA perfusion dynamics encode critical insights into microvascular integrity. This approach establishes a foundation for immediate, accurate no-reflow prediction, enabling clinicians to proactively manage high-risk patients without reliance on delayed imaging.

Ensuring integrity in dental education: Developing a novel AI model for consistent and traceable image analysis in preclinical endodontic procedures.

Ibrahim M, Omidi M, Guentsch A, Gaffney J, Talley J

pubmed logopapersJun 19 2025
Academic integrity is crucial in dental education, especially during practical exams assessing competencies. Traditional oversight may not detect sophisticated academic dishonesty methods like radiograph substitution or tampering. This study aimed to develop and evaluate a novel artificial intelligence (AI) model utilizing a Siamese neural network to detect inconsistencies in radiographic images taken for root canal treatment (RCT) procedures in preclinical endodontic courses, thereby enhancing educational integrity. A Siamese neural network was designed to compare radiographs from different RCT procedures. The model was trained on 3390 radiographs, with data augmentation applied to improve generalizability. The dataset was split into training, validation, and testing subsets. Performance metrics included accuracy, precision, sensitivity (recall), and F1-score. Cross-validation and hyperparameter tuning optimized the model. Our AI model achieved an accuracy of 89.31%, a precision of 76.82%, a sensitivity of 84.82%, and an F1-score of 80.50%. The optimal similarity threshold was 0.48, where maximum accuracy was observed. The confusion matrix indicated a high rate of correct classifications, and cross-validation confirmed the model's robustness with a standard deviation of 1.95% across folds. The AI-driven Siamese neural network effectively detects radiographic inconsistencies in RCT preclinical procedures. Implementing this novel model will serve as an objective tool to uphold academic integrity in dental education, enhance the fairness and reliability of assessments, promote a culture of honesty amongst students, and reduce the administrative burden on educators.

Segmentation of Pulp and Pulp Stones with Automatic Deep Learning in Panoramic Radiographs: An Artificial Intelligence Study.

Firincioglulari M, Boztuna M, Mirzaei O, Karanfiller T, Akkaya N, Orhan K

pubmed logopapersJun 19 2025
<b>Background/Objectives</b>: Different sized calcified masses called pulp stones are often detected in dental pulp and can impact dental procedures. The current research was conducted with the aim of measuring the ability of artificial intelligence algorithms to accurately diagnose pulp and pulp stone calcifications on panoramic radiographs. <b>Methods</b>: We used 713 panoramic radiographs, on which a minimum of one pulp stone was detected, identified retrospectively, and included in the study-4675 pulp stones and 5085 pulps were marked on these radiographs using CVAT v1.7.0 labeling software. <b>Results</b>: In the test dataset, the AI model segmented 462 panoramic radiographs for pulp stone and 220 panoramic radiographs for pulp. The dice coefficient and Intersection over Union (IoU) recorded for the Pulp Segmentation model were 0.84 and 0.758, respectively. Precision and recall were computed to be 0.858 and 0.827, respectively. The Pulp Stone Segmentation model achieved a dice coefficient of 0.759 and an IoU of 0.686, with precision and recall of 0.792 and 0.773, respectively. <b>Conclusions</b>: Pulp and pulp stones can successfully be identified using artificial intelligence algorithms. This study provides evidence that artificial intelligence software using deep learning algorithms can be valuable adjunct tools in aiding clinicians in radiographic diagnosis. Further research in which larger datasets are examined are needed to enhance the capability of artificial intelligence models to make accurate diagnoses.

Diffusion-based Counterfactual Augmentation: Towards Robust and Interpretable Knee Osteoarthritis Grading

Zhe Wang, Yuhua Ru, Aladine Chetouani, Tina Shiang, Fang Chen, Fabian Bauer, Liping Zhang, Didier Hans, Rachid Jennane, William Ewing Palmer, Mohamed Jarraya, Yung Hsin Chen

arxiv logopreprintJun 18 2025
Automated grading of Knee Osteoarthritis (KOA) from radiographs is challenged by significant inter-observer variability and the limited robustness of deep learning models, particularly near critical decision boundaries. To address these limitations, this paper proposes a novel framework, Diffusion-based Counterfactual Augmentation (DCA), which enhances model robustness and interpretability by generating targeted counterfactual examples. The method navigates the latent space of a diffusion model using a Stochastic Differential Equation (SDE), governed by balancing a classifier-informed boundary drive with a manifold constraint. The resulting counterfactuals are then used within a self-corrective learning strategy to improve the classifier by focusing on its specific areas of uncertainty. Extensive experiments on the public Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study (MOST) datasets demonstrate that this approach significantly improves classification accuracy across multiple model architectures. Furthermore, the method provides interpretability by visualizing minimal pathological changes and revealing that the learned latent space topology aligns with clinical knowledge of KOA progression. The DCA framework effectively converts model uncertainty into a robust training signal, offering a promising pathway to developing more accurate and trustworthy automated diagnostic systems. Our code is available at https://github.com/ZWang78/DCA.

Artificial intelligence-based diagnosis of hallux valgus interphalangeus using anteroposterior foot radiographs.

Kwolek K, Gądek A, Kwolek K, Lechowska-Liszka A, Malczak M, Liszka H

pubmed logopapersJun 18 2025
A recently developed method enables automated measurement of the hallux valgus angle (HVA) and the first intermetatarsal angle (IMA) from weight-bearing foot radiographs. This approach employs bone segmentation to identify anatomical landmarks and provides standardized angle measurements based on established guidelines. While effective for HVA and IMA, preoperative radiograph analysis remains complex and requires additional measurements, such as the hallux interphalangeal angle (IPA), which has received limited research attention. To expand the previous method, which measured HVA and IMA, by incorporating the automatic measurement of IPA, evaluating its accuracy and clinical relevance. A preexisting database of manually labeled foot radiographs was used to train a U-Net neural network for segmenting bones and identifying landmarks necessary for IPA measurement. Of the 265 radiographs in the dataset, 161 were selected for training and 20 for validation. The U-Net neural network achieves a high mean Sørensen-Dice index (> 0.97). The remaining 84 radiographs were used to assess the reliability of automated IPA measurements against those taken manually by two orthopedic surgeons (O<sub>A</sub> and O<sub>B</sub>) using computer-based tools. Each measurement was repeated to assess intraobserver (O<sub>A1</sub> and O<sub>A2</sub>) and interobserver (O<sub>A2</sub> and O<sub>B</sub>) reliability. Agreement between automated and manual methods was evaluated using the Intraclass Correlation Coefficient (ICC), and Bland-Altman analysis identified systematic differences. Standard error of measurement (SEM) and Pearson correlation coefficients quantified precision and linearity, and measurement times were recorded to evaluate efficiency. The artificial intelligence (AI)-based system demonstrated excellent reliability, with ICC3.1 values of 0.92 (AI <i>vs</i> O<sub>A2</sub>) and 0.88 (AI <i>vs</i> O<sub>B</sub>), both statistically significant (<i>P</i> < 0.001). For manual measurements, ICC values were 0.95 (O<sub>A2</sub> <i>vs</i> O<sub>A1</sub>) and 0.95 (O<sub>A2</sub> <i>vs</i> O<sub>B</sub>), supporting both intraobserver and interobserver reliability. Bland-Altman analysis revealed minimal biases of: (1) 1.61° (AI <i>vs</i> O<sub>A2</sub>); and (2) 2.54° (AI <i>vs</i> O<sub>B</sub>), with clinically acceptable limits of agreement. The AI system also showed high precision, as evidenced by low SEM values: (1) 1.22° (O<sub>A2</sub> <i>vs</i> O<sub>B</sub>); (2) 1.77° (AI <i>vs</i> O<sub>A2</sub>); and (3) 2.09° (AI <i>vs</i> O<sub>B</sub>). Furthermore, Pearson correlation coefficients confirmed strong linear relationships between automated and manual measurements, with <i>r</i> = 0.85 (AI <i>vs</i> O<sub>A2</sub>) and <i>r</i> = 0.90 (AI <i>vs</i> O<sub>B</sub>). The AI method significantly improved efficiency, completing all 84 measurements 8 times faster than manual methods, reducing the time required from an average 36 minutes to just 4.5 minutes. The proposed AI-assisted IPA measurement method shows strong clinical potential, effectively corresponding with manual measurements. Integrating IPA with HVA and IMA assessments provides a comprehensive tool for automated forefoot deformity analysis, supporting hallux valgus severity classification and preoperative planning, while offering substantial time savings in high-volume clinical settings.

Quality control system for patient positioning and filling in meta-information for chest X-ray examinations.

Borisov AA, Semenov SS, Kirpichev YS, Arzamasov KM, Omelyanskaya OV, Vladzymyrskyy AV, Vasilev YA

pubmed logopapersJun 18 2025
During radiography, irregularities occur, leading to decrease in the diagnostic value of the images obtained. The purpose of this work was to develop a system for automated quality assurance of patient positioning in chest radiographs, with detection of suboptimal contrast, brightness, and metadata errors. The quality assurance system was trained and tested using more than 69,000 X-rays of the chest and other anatomical areas from the Unified Radiological Information Service (URIS) and several open datasets. Our dataset included studies regardless of a patient's gender and race, while the sole exclusion criterion being age below 18 years. A training dataset of radiographs labeled by expert radiologists was used to train an ensemble of modified deep convolutional neural networks architectures ResNet152V2 and VGG19 to identify various quality deficiencies. Model performance was accessed using area under the receiver operating characteristic curve (ROC-AUC), precision, recall, F1-score, and accuracy metrics. Seven neural network models were trained to classify radiographs by the following quality deficiencies: failure to capture the target anatomic region, chest rotation, suboptimal brightness, incorrect anatomical area, projection errors, and improper photometric interpretation. All metrics for each model exceed 95%, indicating high predictive value. All models were combined into a unified system for evaluating radiograph quality. The processing time per image is approximately 3 s. The system supports multiple use cases: integration into an automated radiographic workstations, external quality assurance system for radiology departments, acquisition quality audits for municipal health systems, and routing of studies to diagnostic AI models.

Multimodal Large Language Models for Medical Report Generation via Customized Prompt Tuning

Chunlei Li, Jingyang Hou, Yilei Shi, Jingliang Hu, Xiao Xiang Zhu, Lichao Mou

arxiv logopreprintJun 18 2025
Medical report generation from imaging data remains a challenging task in clinical practice. While large language models (LLMs) show great promise in addressing this challenge, their effective integration with medical imaging data still deserves in-depth exploration. In this paper, we present MRG-LLM, a novel multimodal large language model (MLLM) that combines a frozen LLM with a learnable visual encoder and introduces a dynamic prompt customization mechanism. Our key innovation lies in generating instance-specific prompts tailored to individual medical images through conditional affine transformations derived from visual features. We propose two implementations: prompt-wise and promptbook-wise customization, enabling precise and targeted report generation. Extensive experiments on IU X-ray and MIMIC-CXR datasets demonstrate that MRG-LLM achieves state-of-the-art performance in medical report generation. Our code will be made publicly available.

SCISSOR: Mitigating Semantic Bias through Cluster-Aware Siamese Networks for Robust Classification

Shuo Yang, Bardh Prenkaj, Gjergji Kasneci

arxiv logopreprintJun 17 2025
Shortcut learning undermines model generalization to out-of-distribution data. While the literature attributes shortcuts to biases in superficial features, we show that imbalances in the semantic distribution of sample embeddings induce spurious semantic correlations, compromising model robustness. To address this issue, we propose SCISSOR (Semantic Cluster Intervention for Suppressing ShORtcut), a Siamese network-based debiasing approach that remaps the semantic space by discouraging latent clusters exploited as shortcuts. Unlike prior data-debiasing approaches, SCISSOR eliminates the need for data augmentation and rewriting. We evaluate SCISSOR on 6 models across 4 benchmarks: Chest-XRay and Not-MNIST in computer vision, and GYAFC and Yelp in NLP tasks. Compared to several baselines, SCISSOR reports +5.3 absolute points in F1 score on GYAFC, +7.3 on Yelp, +7.7 on Chest-XRay, and +1 on Not-MNIST. SCISSOR is also highly advantageous for lightweight models with ~9.5% improvement on F1 for ViT on computer vision datasets and ~11.9% for BERT on NLP. Our study redefines the landscape of model generalization by addressing overlooked semantic biases, establishing SCISSOR as a foundational framework for mitigating shortcut learning and fostering more robust, bias-resistant AI systems.

SCISSOR: Mitigating Semantic Bias through Cluster-Aware Siamese Networks for Robust Classification

Shuo Yang, Bardh Prenkaj, Gjergji Kasneci

arxiv logopreprintJun 17 2025
Shortcut learning undermines model generalization to out-of-distribution data. While the literature attributes shortcuts to biases in superficial features, we show that imbalances in the semantic distribution of sample embeddings induce spurious semantic correlations, compromising model robustness. To address this issue, we propose SCISSOR (Semantic Cluster Intervention for Suppressing ShORtcut), a Siamese network-based debiasing approach that remaps the semantic space by discouraging latent clusters exploited as shortcuts. Unlike prior data-debiasing approaches, SCISSOR eliminates the need for data augmentation and rewriting. We evaluate SCISSOR on 6 models across 4 benchmarks: Chest-XRay and Not-MNIST in computer vision, and GYAFC and Yelp in NLP tasks. Compared to several baselines, SCISSOR reports +5.3 absolute points in F1 score on GYAFC, +7.3 on Yelp, +7.7 on Chest-XRay, and +1 on Not-MNIST. SCISSOR is also highly advantageous for lightweight models with ~9.5% improvement on F1 for ViT on computer vision datasets and ~11.9% for BERT on NLP. Our study redefines the landscape of model generalization by addressing overlooked semantic biases, establishing SCISSOR as a foundational framework for mitigating shortcut learning and fostering more robust, bias-resistant AI systems.
Page 4 of 18173 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.