Sort by:
Page 4 of 875 results

Multicenter Evaluation of Interpretable AI for Coronary Artery Disease Diagnosis from PET Biomarkers

Zhang, W., Kwiecinski, J., Shanbhag, A., Miller, R. J., Ramirez, G., Yi, J., Han, D., Dey, D., Grodecka, D., Grodecki, K., Lemley, M., Kavanagh, P., Liang, J. X., Zhou, J., Builoff, V., Hainer, J., Carre, S., Barrett, L., Einstein, A. J., Knight, S., Mason, S., Le, V., Acampa, W., Wopperer, S., Chareonthaitawee, P., Berman, D. S., Di Carli, M. F., Slomka, P.

medrxiv logopreprintJun 30 2025
BackgroundPositron emission tomography (PET)/CT for myocardial perfusion imaging (MPI) provides multiple imaging biomarkers, often evaluated separately. We developed an artificial intelligence (AI) model integrating key clinical PET MPI parameters to improve the diagnosis of obstructive coronary artery disease (CAD). MethodsFrom 17,348 patients undergoing cardiac PET/CT across four sites, we retrospectively enrolled 1,664 subjects who had invasive coronary angiography within 180 days and no prior CAD. Deep learning was used to derive coronary artery calcium score (CAC) from CT attenuation correction maps. XGBoost machine learning model was developed using data from one site to detect CAD, defined as left main stenosis [&ge;]50% or [&ge;]70% in other arteries. The model utilized 10 image-derived parameters from clinical practice: CAC, stress/rest left ventricle ejection fraction, stress myocardial blood flow (MBF), myocardial flow reserve (MFR), ischemic and stress total perfusion deficit (TPD), transient ischemic dilation ratio, rate pressure product, and sex. Generalizability was evaluated in the remaining three sites--chosen to maximize testing power and capture inter-site variability--and model performance was compared with quantitative analyses using the area under the receiver operating characteristic curve (AUC). Patient-specific predictions were explained using shapley additive explanations. ResultsThere was a 61% and 53% CAD prevalence in the training (n=386) and external testing (n=1,278) set, respectively. In the external evaluation, the AI model achieved a higher AUC (0.83 [95% confidence interval (CI): 0.81-0.85]) compared to clinical score by experienced physicians (0.80 [0.77-0.82], p=0.02), ischemic TPD (0.79 [0.77-0.82], p<0.001), MFR (0.75 [0.72-0.78], p<0.001), and CAC (0.69 [0.66-0.72], p<0.001). The models performances were consistent in sex, body mass index, and age groups. The top features driving the prediction were stress/ischemic TPD, CAC, and MFR. ConclusionAI integrating perfusion, flow, and CAC scoring improves PET MPI diagnostic accuracy, offering automated and interpretable predictions for CAD diagnosis.

Thoracic staging of lung cancers by <sup>18</sup>FDG-PET/CT: impact of artificial intelligence on the detection of associated pulmonary nodules.

Trabelsi M, Romdhane H, Ben-Sellem D

pubmed logopapersJun 30 2025
This study focuses on automating the classification of certain thoracic lung cancer stages in 3D <sup>18</sup>FDG-PET/CT images according to the 9th Edition of the TNM Classification for Lung Cancer (2024). By leveraging advanced segmentation and classification techniques, we aim to enhance the accuracy of distinguishing between T4 (pulmonary nodules) Thoracic M0 and M1a (pulmonary nodules) stages. Precise segmentation of pulmonary lobes using the Pulmonary Toolkit enables the identification of tumor locations and additional malignant nodules, ensuring reliable differentiation between ipsilateral and contralateral spread. A modified ResNet-50 model is employed to classify the segmented regions. The performance evaluation shows that the model achieves high accuracy. The unchanged class has the best recall 93% and an excellent F1 score 91%. The M1a (pulmonary nodules) class performs well with an F1 score of 94%, though recall is slightly lower 91%. For T4 (pulmonary nodules) Thoracic M0, the model shows balanced performance with an F1 score of 87%. The overall accuracy is 87%, indicating a robust classification model.

Assessment of quantitative staging PET/computed tomography parameters using machine learning for early detection of progression in diffuse large B-cell lymphoma.

Aksu A, Us A, Küçüker KA, Solmaz Ş, Turgut B

pubmed logopapersJun 30 2025
This study aimed to investigate the role of volumetric and dissemination parameters obtained from pretreatment 18-fluorodeoxyglucose PET/computed tomography (18F-FDG PET/CT) in predicting progression/relapse in patients with diffuse large B-cell lymphoma (DLBCL) with machine learning algorithms. Patients diagnosed with DLBCL histopathologically, treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone, and followed for at least 1 year were reviewed retrospectively. Quantitative parameters such as tumor volume [total metabolic tumor volume (tMTV)], tumor burden [total lesion glycolysis (tTLG)], and the longest distance between two tumor foci (Dmax) were obtained from PET images with a standard uptake value threshold of 4.0. The MTV obtained from the volume of interest with the highest volume was noted as metabolic bulk volume (MBV). By analyzing the patients' PET parameters and clinical information with machine learning algorithms, models that attempt to predict progression/recurrence over 1 year were obtained. Of the 90 patients included, 16 had progression within 1 year. Significant differences were found in tMTV, tTLG, MBV, and Dmax values between patients with and without progression. The area under curve (AUC) of the model obtained with clinical data was 0.701. While a model with an AUC of 0.871 was obtained with a random forest algorithm using PET parameters, the model obtained with the Naive Bayes algorithm including clinical data in PET parameters had an AUC of 0.838. Using quantitative parameters derived from staging PET with machine learning algorithms may enable us to detect early progression in patients with DLBCL and improve early risk stratification and guide treatment decisions in these patients.

AI-Derived Splenic Response in Cardiac PET Predicts Mortality: A Multi-Site Study

Dharmavaram, N., Ramirez, G., Shanbhag, A., Miller, R. J. H., Kavanagh, P., Yi, J., Lemley, M., Builoff, V., Marcinkiewicz, A. M., Dey, D., Hainer, J., Wopperer, S., Knight, S., Le, V. T., Mason, S., Alexanderson, E., Carvajal-Juarez, I., Packard, R. R. S., Rosamond, T. L., Al-Mallah, M. H., Slipczuk, L., Travin, M., Acampa, W., Einstein, A., Chareonthaitawee, P., Berman, D., Di Carli, M., Slomka, P.

medrxiv logopreprintJun 28 2025
BackgroundInadequate pharmacologic stress may limit the diagnostic and prognostic accuracy of myocardial perfusion imaging (MPI). The splenic ratio (SR), a measure of stress adequacy, has emerged as a potential imaging biomarker. ObjectivesTo evaluate the prognostic value of artificial intelligence (AI)-derived SR in a large multicenter 82Rb-PET cohort undergoing regadenoson stress testing. MethodsWe retrospectively analyzed 10,913 patients from three sites in the REFINE PET registry with clinically indicated MPI and linked clinical outcomes. SR was calculated using fully automated algorithms as the ratio of splenic uptake at stress versus rest. Patients were stratified by SR into high ([&ge;]90th percentile) and low (<90th percentile) groups. The primary outcome was major adverse cardiovascular events (MACE). Survival analysis was conducted using Kaplan-Meier and Cox proportional hazards models adjusted for clinical and imaging covariates, including myocardial flow reserve (MFR [&ge;]2 vs. <2). ResultsThe cohort had a median age of 68 years, with 57% male patients. Common risk factors included hypertension (84%), dyslipidemia (76%), diabetes (33%), and prior coronary artery disease (31%). Median follow-up was 4.6 years. Patients with high SR (n=1,091) had an increased risk of MACE (HR 1.18, 95% CI 1.06-1.31, p=0.002). Among patients with preserved MFR ([&ge;]2; n=7,310), high SR remained independently associated with MACE (HR 1.44, 95% CI 1.24-1.67, p<0.0001). ConclusionsElevated AI-derived SR was independently associated with adverse cardiovascular outcomes, including among patients with preserved MFR. These findings support SR as a novel, automated imaging biomarker for risk stratification in 82Rb PET MPI. Condensed AbstractAI-derived splenic ratio (SR), a marker of pharmacologic stress adequacy, was independently associated with increased cardiovascular risk in a large 82Rb PET cohort, even among patients with preserved myocardial flow reserve (MFR). High SR identified individuals with elevated MACE risk despite normal perfusion and flow findings, suggesting unrecognized physiologic vulnerability. Incorporating automated SR into PET MPI interpretation may enhance risk stratification and identify patients who could benefit from intensified preventive care, particularly when traditional imaging markers appear reassuring. These findings support SR as a clinically meaningful, easily integrated biomarker in stress PET imaging.

Filling of incomplete sinograms from sparse PET detector configurations using a residual U-Net

Klara Leffler, Luigi Tommaso Luppino, Samuel Kuttner, Karin Söderkvist, Jan Axelsson

arxiv logopreprintJun 24 2025
Long axial field-of-view PET scanners offer increased field-of-view and sensitivity compared to traditional PET scanners. However, a significant cost is associated with the densely packed photodetectors required for the extended-coverage systems, limiting clinical utilisation. To mitigate the cost limitations, alternative sparse system configurations have been proposed, allowing an extended field-of-view PET design with detector costs similar to a standard PET system, albeit at the expense of image quality. In this work, we propose a deep sinogram restoration network to fill in the missing sinogram data. Our method utilises a modified Residual U-Net, trained on clinical PET scans from a GE Signa PET/MR, simulating the removal of 50% of the detectors in a chessboard pattern (retaining only 25% of all lines of response). The model successfully recovers missing counts, with a mean absolute error below two events per pixel, outperforming 2D interpolation in both sinogram and reconstructed image domain. Notably, the predicted sinograms exhibit a smoothing effect, leading to reconstructed images lacking sharpness in finer details. Despite these limitations, the model demonstrates a substantial capacity for compensating for the undersampling caused by the sparse detector configuration. This proof-of-concept study suggests that sparse detector configurations, combined with deep learning techniques, offer a viable alternative to conventional PET scanner designs. This approach supports the development of cost-effective, total body PET scanners, allowing a significant step forward in medical imaging technology.

Machine learning-based construction and validation of an radiomics model for predicting ISUP grading in prostate cancer: a multicenter radiomics study based on [68Ga]Ga-PSMA PET/CT.

Zhang H, Jiang X, Yang G, Tang Y, Qi L, Chen M, Hu S, Gao X, Zhang M, Chen S, Cai Y

pubmed logopapersJun 24 2025
The International Society of Urological Pathology (ISUP) grading of prostate cancer (PCa) is a crucial factor in the management and treatment planning for PCa patients. An accurate and non-invasive assessment of the ISUP grading group could significantly improve biopsy decisions and treatment planning. The use of PSMA-PET/CT radiomics for predicting ISUP has not been widely studied. The aim of this study is to investigate the role of <sup>68</sup>Ga-PSMA PET/CT radiomics in predicting the ISUP grading of primary PCa. This study included 415 PCa patients who underwent <sup>68</sup>Ga-PSMA PET/CT scans before prostate biopsy or radical prostatectomy. Patients were from three centers: Xiangya Hospital, Central South University (252 cases), Qilu Hospital of Shandong University (External Validation 1, 108 cases), and Qingdao University Medical College (External Validation 2, 55 cases). Xiangya Hospital cases were split into training and testing groups (1:1 ratio), with the other centers serving as external validation groups. Feature selection was performed using Minimum Redundancy Maximum Relevance (mRMR) and Least Absolute Shrinkage and Selection Operator (LASSO) algorithms. Eight machine learning classifiers were trained and tested with ten-fold cross-validation. Sensitivity, specificity, and AUC were calculated for each model. Additionally, we combined the radiomic features with maximum Standardized Uptake Value (SUVmax) and prostate-specific antigen (PSA) to create prediction models and tested the corresponding performances. The best-performing model in the Xiangya Hospital training cohort achieved an AUC of 0.868 (sensitivity 72.7%, specificity 96.0%). Similar trends were seen in the testing cohort and external validation centers (AUCs: 0.860, 0.827, and 0.812). After incorporating PSA and SUVmax, a more robust model was developed, achieving an AUC of 0.892 (sensitivity 77.9%, specificity 96.0%) in the training group. This study established and validated a radiomics model based on <sup>68</sup>Ga-PSMA PET/CT, offering an accurate, non-invasive method for predicting ISUP grades in prostate cancer. A multicenter design with external validation ensured the model's robustness and broad applicability. This is the largest study to date on PSMA radiomics for predicting ISUP grades. Notably, integrating SUVmax and PSA metrics with radiomic features significantly improved prediction accuracy, providing new insights and tools for personalized diagnosis and treatment.

A Robust Residual Three-dimensional Convolutional Neural Networks Model for Prediction of Amyloid-β Positivity by Using FDG-PET.

Ardakani I, Yamada T, Iwano S, Kumar Maurya S, Ishii K

pubmed logopapersJun 17 2025
Widely used in oncology PET, 2-deoxy-2-18F-FDG PET is more accessible and affordable than amyloid PET, which is a crucial tool to determine amyloid positivity in diagnosis of Alzheimer disease (AD). This study aimed to leverage deep learning with residual 3D convolutional neural networks (3DCNN) to develop a robust model that predicts amyloid-β positivity by using FDG-PET. In this study, a cohort of 187 patients was used for model development. It consisted of patients ranging from cognitively normal to those with dementia and other cognitive impairments who underwent T1-weighted MRI, 18F-FDG, and 11C-Pittsburgh compound B (PiB) PET scans. A residual 3DCNN model was configured using nonexhaustive grid search and trained on repeated random splits of our development data set. We evaluated the performance of our model, and particularly its robustness, using a multisite data set of 99 patients of different ethnicities with images at different site harmonization levels. Our model achieved mean AUC scores of 0.815 and 0.840 on images without and with site harmonization correspondingly. Respectively, it achieved higher AUC scores of 0.801 and 0.834 in the cognitively normal (CN) group compared with 0.777 and 0.745 in the dementia group. As for F1 score, the corresponding mean scores were 0.770 and 0.810 on images without and with site harmonization. In the CN group, it achieved lower F1 scores of 0.580 and 0.658 compared with 0.907 and 0.931 in the dementia group. We demonstrated that residual 3DCNN can learn complex 3D spatial patterns in FDG-PET images and robustly predict amyloid-β positivity with significantly less reliance on site harmonization preprocessing.

AI based automatic measurement of split renal function in [<sup>18</sup>F]PSMA-1007 PET/CT.

Valind K, Ulén J, Gålne A, Jögi J, Minarik D, Trägårdh E

pubmed logopapersJun 16 2025
Prostate-specific membrane antigen (PSMA) is an important target for positron emission tomography (PET) with computed tomography (CT) in prostate cancer. In addition to overexpression in prostate cancer cells, PSMA is expressed in healthy cells in the proximal tubules of the kidneys. Consequently, PSMA PET is being explored for renal functional imaging. Left and right renal uptake of PSMA targeted radiopharmaceuticals have shown strong correlations to split renal function (SRF) as determined by other methods. Manual segmentation of kidneys in PET images is, however, time consuming, making this method of measuring SRF impractical. In this study, we designed, trained and validated an artificial intelligence (AI) model for automatic renal segmentation and measurement of SRF in [<sup>18</sup>F]PSMA-1007 PET images. Kidneys were segmented in 135 [<sup>18</sup>F]PSMA-1007 PET/CT studies used to train the AI model. The model was evaluated in 40 test studies. Left renal function percentage (LRF%) measurements ranged from 40 to 67%. Spearman correlation coefficients for LRF% measurements ranged between 0.98 and 0.99 when comparing segmentations made by 3 human readers and the AI model. The largest LRF% difference between any measurements in a single case was 3 percentage points. The AI model produced measurements similar to those of human readers. Automatic measurement of SRF in PSMA PET is feasible. A potential use could be to provide additional data in investigation of renal functional impairment in patients treated for prostate cancer.

optiGAN: A Deep Learning-Based Alternative to Optical Photon Tracking in Python-Based GATE (10+).

Mummaneni G, Trigila C, Krah N, Sarrut D, Roncali E

pubmed logopapersJun 9 2025
To accelerate optical photon transport simulations in the GATE medical physics framework using a Generative Adversarial Network (GAN), while ensuring high modeling accuracy. Traditionally, detailed optical Monte Carlo methods have been the gold standard for modeling photon interactions in detectors, but their high computational cost remains a challenge. This study explores the integration of optiGAN, a Generative Adversarial Network (GAN) model into GATE 10, the new Python-based version of the GATE medical physics simulation framework released in November 2024.&#xD;Approach: The goal of optiGAN is to accelerate optical photon transport simulations while maintaining modelling accuracy. The optiGAN model, based on a GAN architecture, was integrated into GATE 10 as a computationally efficient alternative to traditional optical Monte Carlo simulations. To ensure consistency, optical photon transport modules were implemented in GATE 10 and validated against GATE v9.3 under identical simulation conditions. Subsequently, simulations using full Monte Carlo tracking in GATE 10 were compared to those using GATE 10-optiGAN.&#xD;Main results: Validation studies confirmed that GATE 10 produces results consistent with GATE v9.3. Simulations using GATE 10-optiGAN showed over 92% similarity to Monte Carlo-based GATE 10 results, based on the Jensen-Shannon distance across multiple photon transport parameters. optiGAN successfully captured multimodal distributions of photon position, direction, and energy at the photodetector face. Simulation time analysis revealed a reduction of approximately 50% in execution time with GATE 10-optiGAN compared to full Monte Carlo simulations.&#xD;Significance: The study confirms both the fidelity of optical photon transport modeling in GATE 10 and the effective integration of deep learning-based acceleration through optiGAN. This advancement enables large-scale, high-fidelity optical simulations with significantly reduced computational cost, supporting broader applications in medical imaging and detector design.
Page 4 of 875 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.