Sort by:
Page 4 of 1011010 results

Anatomy-Aware Low-Dose CT Denoising via Pretrained Vision Models and Semantic-Guided Contrastive Learning

Runze Wang, Zeli Chen, Zhiyun Song, Wei Fang, Jiajin Zhang, Danyang Tu, Yuxing Tang, Minfeng Xu, Xianghua Ye, Le Lu, Dakai Jin

arxiv logopreprintAug 11 2025
To reduce radiation exposure and improve the diagnostic efficacy of low-dose computed tomography (LDCT), numerous deep learning-based denoising methods have been developed to mitigate noise and artifacts. However, most of these approaches ignore the anatomical semantics of human tissues, which may potentially result in suboptimal denoising outcomes. To address this problem, we propose ALDEN, an anatomy-aware LDCT denoising method that integrates semantic features of pretrained vision models (PVMs) with adversarial and contrastive learning. Specifically, we introduce an anatomy-aware discriminator that dynamically fuses hierarchical semantic features from reference normal-dose CT (NDCT) via cross-attention mechanisms, enabling tissue-specific realism evaluation in the discriminator. In addition, we propose a semantic-guided contrastive learning module that enforces anatomical consistency by contrasting PVM-derived features from LDCT, denoised CT and NDCT, preserving tissue-specific patterns through positive pairs and suppressing artifacts via dual negative pairs. Extensive experiments conducted on two LDCT denoising datasets reveal that ALDEN achieves the state-of-the-art performance, offering superior anatomy preservation and substantially reducing over-smoothing issue of previous work. Further validation on a downstream multi-organ segmentation task (encompassing 117 anatomical structures) affirms the model's ability to maintain anatomical awareness.

Automated Prediction of Bone Volume Removed in Mastoidectomy.

Nagururu NV, Ishida H, Ding AS, Ishii M, Unberath M, Taylor RH, Munawar A, Sahu M, Creighton FX

pubmed logopapersAug 11 2025
The bone volume drilled by surgeons during mastoidectomy is determined by the need to localize the position, optimize the view, and reach the surgical endpoint while avoiding critical structures. Predicting the volume of bone removed before an operation can significantly enhance surgical training by providing precise, patient-specific guidance and enable the development of more effective computer-assisted and robotic surgical interventions. Single institution, cross-sectional. VR simulation. We developed a deep learning pipeline to automate the prediction of bone volume removed during mastoidectomy using data from virtual reality mastoidectomy simulations. The data set included 15 deidentified temporal bone computed tomography scans. The network was evaluated using fivefold cross-validation, comparing predicted and actual bone removal with metrics such as the Dice score (DSC) and Hausdorff distance (HD). Our method achieved a median DSC of 0.775 (interquartile range [IQR]: 0.725-0.810) and a median HD of 0.492 mm (IQR: 0.298-0.757 mm). Predictions reached the mastoidectomy endpoint of visualizing the horizontal canal and incus in 80% (12/15) of temporal bones. Qualitative analysis indicated that predictions typically produced realistic mastoidectomy endpoints, though some cases showed excessive or insufficient bone removal, particularly at the temporal bone cortex and tegmen mastoideum. This study establishes a foundational step in using deep learning to predict bone volume removal during mastoidectomy. The results indicate that learning-based methods can reasonably approximate the surgical endpoint of mastoidectomy. Further refinement with larger, more diverse data sets and improved model architectures will be essential for enhancing prediction accuracy.

Post-deployment Monitoring of AI Performance in Intracranial Hemorrhage Detection by ChatGPT.

Rohren E, Ahmadzade M, Colella S, Kottler N, Krishnan S, Poff J, Rastogi N, Wiggins W, Yee J, Zuluaga C, Ramis P, Ghasemi-Rad M

pubmed logopapersAug 11 2025
To evaluate the post-deployment performance of an artificial intelligence (AI) system (Aidoc) for intracranial hemorrhage (ICH) detection and assess the utility of ChatGPT-4 Turbo for automated AI monitoring. This retrospective study evaluated 332,809 head CT examinations from 37 radiology practices across the United States (December 2023-May 2024). Of these, 13,569 cases were flagged as positive for ICH by the Aidoc AI system. A HIPAA (Health Insurance Portability and Accountability Act) -compliant version of ChatGPT-4 Turbo was used to extract data from radiology reports. Ground truth was established through radiologists' review of 200 randomly selected cases. Performance metrics were calculated for ChatGPT, Aidoc and radiologists. ChatGPT-4 Turbo demonstrated high diagnostic accuracy in identifying intracranial hemorrhage (ICH) from radiology reports, with a positive predictive value of 1 and a negative predictive value of 0.988 (AUC:0.996). Aidoc's false positive classifications were influenced by scanner manufacturer, midline shift, mass effect, artifacts, and neurologic symptoms. Multivariate analysis identified Philips scanners (OR: 6.97, p=0.003) and artifacts (OR: 3.79, p=0.029) as significant contributors to false positives, while midline shift (OR: 0.08, p=0.021) and mass effect (OR: 0.18, p=0.021) were associated with a reduced false positive rate. Aidoc-assisted radiologists achieved a sensitivity of 0.936 and a specificity of 1. This study underscores the importance of continuous performance monitoring for AI systems in clinical practice. The integration of LLMs offers a scalable solution for evaluating AI performance, ensuring reliable deployment and enhancing diagnostic workflows.

Outcome Prediction in Pediatric Traumatic Brain Injury Utilizing Social Determinants of Health and Machine Learning Methods.

Kaliaev A, Vejdani-Jahromi M, Gunawan A, Qureshi M, Setty BN, Farris C, Takahashi C, AbdalKader M, Mian A

pubmed logopapersAug 11 2025
Considerable socioeconomic disparities exist among pediatric traumatic brain injury (TBI) patients. This study aims to analyze the effects of social determinants of health on head injury outcomes and to create a novel machine-learning algorithm (MLA) that incorporates socioeconomic factors to predict the likelihood of a positive or negative trauma-related finding on head computed tomography (CT). A cohort of blunt trauma patients under age 15 who presented to the largest safety net hospital in New England between January 2006 and December 2013 (n=211) was included in this study. Patient socioeconomic data such as race, language, household income, and insurance type were collected alongside other parameters like Injury Severity Score (ISS), age, sex, and mechanism of injury. Multivariable analysis was performed to identify significant factors in predicting a positive head CT outcome. The cohort was split into 80% training (168 samples) and 20% testing (43 samples) datasets using stratified sampling. Twenty-two multi-parametric MLAs were trained with 5-fold cross-validation and hyperparameter tuning via GridSearchCV, and top-performing models were evaluated on the test dataset. Significant factors associated with pediatric head CT outcome included ISS, age, and insurance type (p<0.05). The age of the subjects with a clinically relevant trauma-related head CT finding (median= 1.8 years) was significantly different from the age of patients without such findings (median= 9.1 years). These predictors were utilized to train the machine learning models. With ISS, the Fine Gaussian SVM achieved the highest test AUC (0.923), with accuracy=0.837, sensitivity=0.647, and specificity=0.962. The Coarse Tree yielded accuracy=0.837, AUC=0.837, sensitivity=0.824, and specificity=0.846. Without ISS, the Narrow Neural Network performed best with accuracy=0.837, AUC=0.857, sensitivity=0.765, and specificity=0.885. Key predictors of clinically relevant head CT findings in pediatric TBI include ISS, age, and social determinants of health, with children under 5 at higher risk. A novel Fine Gaussian SVM model outperformed other MLA, offering high accuracy in predicting outcomes. This tool shows promise for improving clinical decisions while minimizing radiation exposure in children. TBI = Traumatic Brain Injury; ISS = Injury Severity Score; MLA = Machine Learning Algorithm; CT = Computed Tomography; AUC = Area Under the Curve.

Artificial Intelligence-Driven Body Composition Analysis Enhances Chemotherapy Toxicity Prediction in Colorectal Cancer.

Liu YZ, Su PF, Tai AS, Shen MR, Tsai YS

pubmed logopapersAug 11 2025
Body surface area (BSA)-based chemotherapy dosing remains standard despite its limitations in predicting toxicity. Variations in body composition, particularly skeletal muscle and adipose tissue, influence drug metabolism and toxicity risk. This study aims to investigate the mediating role of body composition in the relationship between BSA-based dosing and dose-limiting toxicities (DLTs) in colorectal cancer patients receiving oxaliplatin-based chemotherapy. We retrospectively analyzed 483 stage III colorectal cancer patients treated at National Cheng Kung University Hospital (2013-2021). An artificial intelligence (AI)-driven algorithm quantified skeletal muscle and adipose tissue compartments from lumbar 3 (L3) vertebral-level computed tomography (CT) scans. Mediation analysis evaluated body composition's role in chemotherapy-related toxicities. Among the cohort, 18.2% (n = 88) experienced DLTs. While BSA alone was not significantly associated with DLTs (OR = 0.473, p = 0.376), increased intramuscular adipose tissue (IMAT) significantly predicted higher DLT risk (OR = 1.047, p = 0.038), whereas skeletal muscle area was protective. Mediation analysis confirmed that IMAT partially mediated the relationship between BSA and DLTs (indirect effect: 0.05, p = 0.040), highlighting adipose infiltration's role in chemotherapy toxicity. BSA-based dosing inadequately accounts for interindividual variations in chemotherapy tolerance. AI-assisted body composition analysis provides a precision oncology framework for identifying high-risk patients and optimizing chemotherapy regimens. Prospective validation is warranted to integrate body composition into routine clinical decision-making.

Deep learning and radiomics fusion for predicting the invasiveness of lung adenocarcinoma within ground glass nodules.

Sun Q, Yu L, Song Z, Wang C, Li W, Chen W, Xu J, Han S

pubmed logopapersAug 11 2025
Microinvasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC) require distinct treatment strategies and are associated with different prognoses, underscoring the importance of accurate differentiation. This study aims to develop a predictive model that combines radiomics and deep learning to effectively distinguish between MIA and IAC. In this retrospective study, 252 pathologically confirmed cases of ground-glass nodules (GGNs) were included, with 177 allocated to the training set and 75 to the testing set. Radiomics, 2D deep learning, and 3D deep learning models were constructed based on CT images. In addition, two fusion strategies were employed to integrate these modalities: early fusion, which concatenates features from all modalities prior to classification, and late fusion, which ensembles the output probabilities of the individual models. The predictive performance of all five models was evaluated using the area under the receiver operating characteristic curve (AUC), and DeLong's test was performed to compare differences in AUC between models. The radiomics model achieved an AUC of 0.794 (95% CI: 0.684-0.898), while the 2D and 3D deep learning models achieved AUCs of 0.754 (95% CI: 0.594-0.882) and 0.847 (95% CI: 0.724-0.945), respectively, in the testing set. Among the fusion models, the late fusion strategy demonstrated the highest predictive performance, with an AUC of 0.898 (95% CI: 0.784-0.962), outperforming the early fusion model, which achieved an AUC of 0.857 (95% CI: 0.731-0.936). Although the differences were not statistically significant, the late fusion model yielded the highest numerical values for diagnostic accuracy, sensitivity, and specificity across all models. The fusion of radiomics and deep learning features shows potential in improving the differentiation of MIA and IAC in GGNs. The late fusion strategy demonstrated promising results, warranting further validation in larger, multicenter studies.

Prediction of hematoma changes in spontaneous intracerebral hemorrhage using a Transformer-based generative adversarial network to generate follow-up CT images.

Feng C, Jiang C, Hu C, Kong S, Ye Z, Han J, Zhong K, Yang T, Yin H, Lao Q, Ding Z, Shen D, Shen Q

pubmed logopapersAug 10 2025
To visualize and assess hematoma growth trends by generating follow-up CT images within 24 h based on baseline CT images of spontaneous intracerebral hemorrhage (sICH) using Transformer-integrated Generative Adversarial Networks (GAN). Patients with sICH were retrospectively recruited from two medical centers. The imaging data included baseline non-contrast CT scans taken after onset and follow-up imaging within 24 h. In the test set, the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM) were utilized to quantitatively assess the quality of the predicted images. Pearson's correlation analysis was performed to assess the agreement of semantic features and geometric properties of hematomas between true follow-up CT images and the predicted images. The consistency of hematoma expansion prediction between true and generated images was further examined. The PSNR of the predicted images was 26.73 ± 1.11, and the SSIM was 91.23 ± 1.10. The Pearson correlation coefficients (r) with 95 % confidence intervals (CI) for irregularity, satellite sign number, intraventricular or subarachnoid hemorrhage, midline shift, edema expansion, mean CT value, maximum cross-sectional area, and hematoma volume between the predicted and true follow-up images were as follows: 0.94 (0.91, 0.96), 0.87 (0.81, 0.91), 0.86 (0.80, 0.91), 0.89 (0.84, 0.92), 0.91 (0.87, 0.94), 0.78(0.68, 0.84), 0.94(0.91, 0.96), and 0.94 (0.91, 0.96), respectively. The correlation coefficient (r) for predicting hematoma expansion between predicted and true follow-up images was 0.86 (95 % CI: 0.79, 0.90; P < 0.001). The model constructed using a GAN integrated with Transformer modules can accurately visualize early hematoma changes in sICH.

Dendrite cross attention for high-dose-rate brachytherapy distribution planning.

Saini S, Liu X

pubmed logopapersAug 10 2025
Cervical cancer is a significant global health issue, and high-dose-rate brachytherapy (HDR-BT) is crucial for its treatment. However, manually creating HDR-BT plans is time-consuming and heavily relies on the planner's expertise, making standardization difficult. This study introduces two advanced deep learning models to address this need: Bi-branch Cross-Attention UNet (BiCA-UNet) and Dendrite Cross-Attention UNet (DCA-UNet). BiCA-UNet enhances the correlation between the CT scan and segmentation maps of the clinical target volume (CTV), applicator, bladder, and rectum. It uses two branches: one processes the stacked input of CT scans and segmentations, and the other focuses on the CTV segmentation. A cross-attention mechanism integrates these branches, improving the model's understanding of the CTV region for accurate dose predictions. Building on BiCA-UNet, DCA-UNet further introduces a primary branch of stacked inputs and three secondary branches for CTV, bladder, and rectum segmentations forming a dendritic structure. Cross attention with bladder and rectum segmentation helps the model understand the regions of organs at risk (OAR), refining dose prediction. Evaluation of these models using multiple metrics indicates that both BiCA-UNet and DCA-UNet significantly improve HDR-BT dose prediction accuracy for various applicator types. The cross-attention mechanisms enhance the feature representation of critical anatomical regions, leading to precise and reliable treatment plans. This research highlights the potential of BiCA-UNet and DCA-UNet in advancing HDR-BT planning, contributing to the standardization of treatment plans, and offering promising directions for future research to improve patient outcomes in the source data.

"AI tumor delineation for all breathing phases in early-stage NSCLC".

DelaO-Arevalo LR, Sijtsema NM, van Dijk LV, Langendijk JA, Wijsman R, van Ooijen PMA

pubmed logopapersAug 9 2025
Accurate delineation of the Gross Tumor Volume (GTV) and the Internal Target Volume (ITV) in early-stage lung tumors is crucial in Stereotactic Body Radiation Therapy (SBRT). Traditionally, the ITVs, which account for breathing motion, are generated by manually contouring GTVs across all breathing phases (BPs), a time-consuming process. This research aims to streamline this workflow by developing a deep learning algorithm to automatically delineate GTVs in all four-dimensional computed tomography (4D-CT) BPs for early-stage Non-Small Cell Lung Cancer Patients (NSCLC). A dataset of 214 early-stage NSCLC patients treated with SBRT was used. Each patient had a 4D-CT scan containing ten reconstructed BPs. The data were divided into a training set (75 %) and a testing set (25 %). Three models SwinUNetR and Dynamic UNet (DynUnet), and a hybrid model combining both (Swin + Dyn)were trained and evaluated using the Dice Similarity Coefficient (DSC), 3 mm Surface Dice Similarity Coefficient (SDSC), and the 95<sup>th</sup> percentile Hausdorff distance (HD95). The best performing model was used to delineate GTVs in all test set BPs, creating the ITVs using two methods: all 10 phases and the maximum inspiration/expiration phases. The ITVs were compared to the ground truth ITVs. The Swin + Dyn model achieved the highest performance, with a test set SDSC of 0.79 ± 0.14 for GTV 50 %. For the ITVs, the SDSC was 0.79 ± 0.16 using all 10 BPs and 0.77 ± 0.14 using 2 BPs. At the voxel level, the Swin + DynNet network achieved a sensitivity of 0.75 ± 0.14 and precision of 0.84 ± 0.10 for the ITV 2 breathing phases, and a sensitivity of 0.79 ± 0.12 and precision of 0.80 ± 0.11 for the 10 breathing phases. The Swin + Dyn Net algorithm, trained on the maximum expiration CT-scan effectively delineated gross tumor volumes in all breathing phases and the resulting ITV showed a good agreement with the ground truth (surface DSC = 0.79 ± 0.16 using all 10 BPs and 0.77 ± 0.14 using 2 BPs.). The proposed approach could reduce delineation time and inter-performer variability in the tumor contouring process for NSCLC SBRT workflows.

Kidney volume after endovascular exclusion of abdominal aortic aneurysms by EVAR and FEVAR.

B S, C V, Turkia J B, Weydevelt E V, R P, F L, A K

pubmed logopapersAug 9 2025
Decreased kidney volume is a sign of renal aging and/or decreased vascularization. The aim of this study was to determine whether renal volume changes 24 months after exclusion of an abdominal aortic aneurysm (AAA), and to compare fenestrated (FEVAR) and subrenal (EVAR) stents. Retrospective single-center study from a prospective registry, including patients between 60 and 80 years with normal preoperative renal function (eGFR≥60 ml/min/1.73 m<sup>-2</sup>) who underwent fenestrated (FEVAR) or infrarenal (EVAR) stent grafts between 2015 and 2021. Patients had to have had an CT scan at 24 months of the study to be included. Exclusion criteria were renal branches, the presence of preoperative renal insufficiency, a single kidney, embolization or coverage of an accessory renal artery, occlusion of a renal artery during follow-up and mention of AAA rupture. Renal volume was measured using sizing software (EndoSize, therenva) based on fully automatic deep-learning segmentation of several anatomical structures (arterial lumen, bone structure, thrombus, heart, etc.), including the kidneys. In the presence of renal cysts, these were manually excluded from the segmentation. Forty-eight patients were included (24 EVAR vs. 24 FEVAR), 96 kidneys were segmented. There was no difference between groups in age (78.9±6.7 years vs. 69.4±6.8, p=0.89), eGFR 85.8 ± 12.4 [62-107] ml/min/1.73 m<sup>-2</sup> vs. 81 ± 16.2 [42-107] (p=0.36), and renal volume 170.9 ± 29.7 [123-276] mL vs. 165.3 ± 37.4 [115-298] (p=0.12). At 24 months in the EVAR group, there was a non-significant reduction in eGFR 84.1 ± 17.2 [61-128] ml/min/1.73 m<sup>-2</sup> vs. 81 ± 16.2 [42-107] (p=0.36) or renal volume 170.9 ± 29.7 [123-276] mL vs. 165.3 ± 37.4 [115-298] (p=0.12). In the FEVAR group, at 24 months there was a non-significant fall in eGFR 84.1 ± 17.2 [61-128] ml/min/1.73 m<sup>-2</sup> vs. 73.8 ± 21.4 [40-110] (p=0.09), while renal volume decreased significantly 182 ± 37.8 [123-293] mL vs. 158.9 ± 40.2 [45-258] (p=0.007). In this study, there appears to be a significant decrease in renal volume without a drop in eGFR 24 months after fenestrated stenting. This decrease may reflect changes in renal perfusion and could potentially be predictive of long-term renal impairment, although this cannot be confirmed within the limits of this small sample. Further studies with long-term follow-up are needed.
Page 4 of 1011010 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.