Sort by:
Page 4 of 14137 results

Mitigating Data Bias in Healthcare AI with Self-Supervised Standardization.

Lan G, Zhu Y, Xiao S, Iqbal M, Yang J

pubmed logopapersJul 23 2025
The rapid advancement of artificial intelligence (AI) in healthcare has accelerated innovations in medical algorithms, yet its broader adoption faces critical ethical and technical barriers. A key challenge lies in algorithmic bias stemming from heterogeneous medical data across institutions, equipment, and workflows, which may perpetuate disparities in AI-driven diagnoses and exacerbate inequities in patient care. While AI's ability to extract deep features from large-scale data offers transformative potential, its effectiveness heavily depends on standardized, high-quality datasets. Current standardization gaps not only limit model generalizability but also raise concerns about reliability and fairness in real-world clinical settings, particularly for marginalized populations. Addressing these urgent issues, this paper proposes an ethical AI framework centered on a novel self-supervised medical image standardization method. By integrating self-supervised image style conversion, channel attention mechanisms, and contrastive learning-based loss functions, our approach enhances structural and style consistency in diverse datasets while preserving patient privacy through decentralized learning paradigms. Experiments across multi-institutional medical image datasets demonstrate that our method significantly improves AI generalizability without requiring centralized data sharing. By bridging the data standardization gap, this work advances technical foundations for trustworthy AI in healthcare.

Harmonization in Magnetic Resonance Imaging: A Survey of Acquisition, Image-level, and Feature-level Methods

Qinqin Yang, Firoozeh Shomal-Zadeh, Ali Gholipour

arxiv logopreprintJul 22 2025
Modern medical imaging technologies have greatly advanced neuroscience research and clinical diagnostics. However, imaging data collected across different scanners, acquisition protocols, or imaging sites often exhibit substantial heterogeneity, known as "batch effects" or "site effects". These non-biological sources of variability can obscure true biological signals, reduce reproducibility and statistical power, and severely impair the generalizability of learning-based models across datasets. Image harmonization aims to eliminate or mitigate such site-related biases while preserving meaningful biological information, thereby improving data comparability and consistency. This review provides a comprehensive overview of key concepts, methodological advances, publicly available datasets, current challenges, and future directions in the field of medical image harmonization, with a focus on magnetic resonance imaging (MRI). We systematically cover the full imaging pipeline, and categorize harmonization approaches into prospective acquisition and reconstruction strategies, retrospective image-level and feature-level methods, and traveling-subject-based techniques. Rather than providing an exhaustive survey, we focus on representative methods, with particular emphasis on deep learning-based approaches. Finally, we summarize the major challenges that remain and outline promising avenues for future research.

The safety and accuracy of radiation-free spinal navigation using a short, scoliosis-specific BoneMRI-protocol, compared to CT.

Lafranca PPG, Rommelspacher Y, Walter SG, Muijs SPJ, van der Velden TA, Shcherbakova YM, Castelein RM, Ito K, Seevinck PR, Schlösser TPC

pubmed logopapersJul 21 2025
Spinal navigation systems require pre- and/or intra-operative 3-D imaging, which expose young patients to harmful radiation. We assessed a scoliosis-specific MRI-protocol that provides T2-weighted MRI and AI-generated synthetic-CT (sCT) scans, through deep learning algorithms. This study aims to compare MRI-based synthetic-CT spinal navigation to CT for safety and accuracy of pedicle screw planning and placement at thoracic and lumbar levels. Spines of 5 cadavers were scanned with thin-slice CT and the scoliosis-specific MRI-protocol (to create sCT). Preoperatively, on both CT and sCT screw trajectories were planned. Subsequently, four spine surgeons performed surface-matched, navigated placement of 2.5 mm k-wires in all pedicles from T3 to L5. Randomization for CT/sCT, surgeon and side was performed (1:1 ratio). On postoperative CT-scans, virtual screws were simulated over k-wires. Maximum angulation, distance between planned and postoperative screw positions and medial breach rate (Gertzbein-Robbins classification) were assessed. 140 k-wires were inserted, 3 were excluded. There were no pedicle breaches > 2 mm. Of sCT-guided screws, 59 were grade A and 10 grade B. For the CT-guided screws, 47 were grade A and 21 grade B (p = 0.022). Average distance (± SD) between intraoperative and postoperative screw positions was 2.3 ± 1.5 mm in sCT-guided screws, and 2.4 ± 1.8 mm for CT (p = 0.78), average maximum angulation (± SD) was 3.8 ± 2.5° for sCT and 3.9 ± 2.9° for CT (p = 0.75). MRI-based, AI-generated synthetic-CT spinal navigation allows for safe and accurate planning and placement of thoracic and lumbar pedicle screws in a cadaveric model, without significant differences in distance and angulation between planned and postoperative screw positions compared to CT.

PET Image Reconstruction Using Deep Diffusion Image Prior

Fumio Hashimoto, Kuang Gong

arxiv logopreprintJul 20 2025
Diffusion models have shown great promise in medical image denoising and reconstruction, but their application to Positron Emission Tomography (PET) imaging remains limited by tracer-specific contrast variability and high computational demands. In this work, we proposed an anatomical prior-guided PET image reconstruction method based on diffusion models, inspired by the deep diffusion image prior (DDIP) framework. The proposed method alternated between diffusion sampling and model fine-tuning guided by the PET sinogram, enabling the reconstruction of high-quality images from various PET tracers using a score function pretrained on a dataset of another tracer. To improve computational efficiency, the half-quadratic splitting (HQS) algorithm was adopted to decouple network optimization from iterative PET reconstruction. The proposed method was evaluated using one simulation and two clinical datasets. For the simulation study, a model pretrained on [$^{18}$F]FDG data was tested on amyloid-negative PET data to assess out-of-distribution (OOD) performance. For the clinical-data validation, ten low-dose [$^{18}$F]FDG datasets and one [$^{18}$F]Florbetapir dataset were tested on a model pretrained on data from another tracer. Experiment results show that the proposed PET reconstruction method can generalize robustly across tracer distributions and scanner types, providing an efficient and versatile reconstruction framework for low-dose PET imaging.

Medical radiology report generation: A systematic review of current deep learning methods, trends, and future directions.

Izhar A, Idris N, Japar N

pubmed logopapersJul 19 2025
Medical radiology reports play a crucial role in diagnosing various diseases, yet generating them manually is time-consuming and burdens clinical workflows. Medical radiology report generation aims to automate this process using deep learning to assist radiologists and reduce patient wait times. This study presents the most comprehensive systematic review to date on deep learning-based MRRG, encompassing recent advances that span traditional architectures to large language models. We focus on available datasets, modeling approaches, and evaluation practices. Following PRISMA guidelines, we retrieved 323 articles from major academic databases and included 78 studies after eligibility screening. We critically analyze key components such as model architectures, loss functions, datasets, evaluation metrics, and optimizers - identifying 22 widely used datasets, 14 evaluation metrics, around 20 loss functions, over 25 visual backbones, and more than 30 textual backbones. To support reproducibility and accelerate future research, we also compile links to modern models, toolkits, and pretrained resources. Our findings provide technical insights and outline future directions to address current limitations, promoting collaboration at the intersection of medical imaging, natural language processing, and deep learning to advance trustworthy AI systems in radiology.

Artificial Intelligence for Tumor [<sup>18</sup>F]FDG PET Imaging: Advancements and Future Trends - Part II.

Safarian A, Mirshahvalad SA, Farbod A, Jung T, Nasrollahi H, Schweighofer-Zwink G, Rendl G, Pirich C, Vali R, Beheshti M

pubmed logopapersJul 18 2025
The integration of artificial intelligence (AI) into [<sup>18</sup>F]FDG PET/CT imaging continues to expand, offering new opportunities for more precise, consistent, and personalized oncologic evaluations. Building on the foundation established in Part I, this second part explores AI-driven innovations across a broader range of malignancies, including hematological, genitourinary, melanoma, and central nervous system tumors as well applications of AI in pediatric oncology. Radiomics and machine learning algorithms are being explored for their ability to enhance diagnostic accuracy, reduce interobserver variability, and inform complex clinical decision-making, such as identifying patients with refractory lymphoma, assessing pseudoprogression in melanoma, or predicting brain metastases in extracranial malignancies. Additionally, AI-assisted lesion segmentation, quantitative feature extraction, and heterogeneity analysis are contributing to improved prediction of treatment response and long-term survival outcomes. Despite encouraging results, variability in imaging protocols, segmentation methods, and validation strategies across studies continues to challenge reproducibility and remains a barrier to clinical translation. This review evaluates recent advancements of AI, its current clinical applications, and emphasizes the need for robust standardization and prospective validation to ensure the reproducibility and generalizability of AI tools in PET imaging and clinical practice.

Deep Learning-Based Fetal Lung Segmentation from Diffusion-weighted MRI Images and Lung Maturity Evaluation for Fetal Growth Restriction

Zhennan Xiao, Katharine Brudkiewicz, Zhen Yuan, Rosalind Aughwane, Magdalena Sokolska, Joanna Chappell, Trevor Gaunt, Anna L. David, Andrew P. King, Andrew Melbourne

arxiv logopreprintJul 17 2025
Fetal lung maturity is a critical indicator for predicting neonatal outcomes and the need for post-natal intervention, especially for pregnancies affected by fetal growth restriction. Intra-voxel incoherent motion analysis has shown promising results for non-invasive assessment of fetal lung development, but its reliance on manual segmentation is time-consuming, thus limiting its clinical applicability. In this work, we present an automated lung maturity evaluation pipeline for diffusion-weighted magnetic resonance images that consists of a deep learning-based fetal lung segmentation model and a model-fitting lung maturity assessment. A 3D nnU-Net model was trained on manually segmented images selected from the baseline frames of 4D diffusion-weighted MRI scans. The segmentation model demonstrated robust performance, yielding a mean Dice coefficient of 82.14%. Next, voxel-wise model fitting was performed based on both the nnU-Net-predicted and manual lung segmentations to quantify IVIM parameters reflecting tissue microstructure and perfusion. The results suggested no differences between the two. Our work shows that a fully automated pipeline is possible for supporting fetal lung maturity assessment and clinical decision-making.

Physics consistent machine learning framework for inverse modeling with applications to ICF capsule implosions.

Serino DA, Bell E, Klasky M, Southworth BS, Nadiga B, Wilcox T, Korobkin O

pubmed logopapersJul 17 2025
In high energy density physics (HEDP) and inertial confinement fusion (ICF), predictive modeling is complicated by uncertainty in parameters that characterize various aspects of the modeled system, such as those characterizing material properties, equation of state (EOS), opacities, and initial conditions. Typically, however, these parameters are not directly observable. What is observed instead is a time sequence of radiographic projections using X-rays. In this work, we define a set of sparse hydrodynamic features derived from the outgoing shock profile and outer material edge, which can be obtained from radiographic measurements, to directly infer such parameters. Our machine learning (ML)-based methodology involves a pipeline of two architectures, a radiograph-to-features network (R2FNet) and a features-to-parameters network (F2PNet), that are trained independently and later combined to approximate a posterior distribution for the parameters from radiographs. We show that the machine learning architectures are able to accurately infer initial conditions and EOS parameters, and that the estimated parameters can be used in a hydrodynamics code to obtain density fields, shocks, and material interfaces that satisfy thermodynamic and hydrodynamic consistency. Finally, we demonstrate that features resulting from an unknown EOS model can be successfully mapped onto parameters of a chosen analytical EOS model, implying that network predictions are learning physics, with a degree of invariance to the underlying choice of EOS model. To the best of our knowledge, our framework is the first demonstration of recovering both thermodynamic and hydrodynamic consistent density fields from noisy radiographs.

Benchmarking and Explaining Deep Learning Cortical Lesion MRI Segmentation in Multiple Sclerosis

Nataliia Molchanova, Alessandro Cagol, Mario Ocampo-Pineda, Po-Jui Lu, Matthias Weigel, Xinjie Chen, Erin Beck, Charidimos Tsagkas, Daniel Reich, Colin Vanden Bulcke, Anna Stolting, Serena Borrelli, Pietro Maggi, Adrien Depeursinge, Cristina Granziera, Henning Mueller, Pedro M. Gordaliza, Meritxell Bach Cuadra

arxiv logopreprintJul 16 2025
Cortical lesions (CLs) have emerged as valuable biomarkers in multiple sclerosis (MS), offering high diagnostic specificity and prognostic relevance. However, their routine clinical integration remains limited due to subtle magnetic resonance imaging (MRI) appearance, challenges in expert annotation, and a lack of standardized automated methods. We propose a comprehensive multi-centric benchmark of CL detection and segmentation in MRI. A total of 656 MRI scans, including clinical trial and research data from four institutions, were acquired at 3T and 7T using MP2RAGE and MPRAGE sequences with expert-consensus annotations. We rely on the self-configuring nnU-Net framework, designed for medical imaging segmentation, and propose adaptations tailored to the improved CL detection. We evaluated model generalization through out-of-distribution testing, demonstrating strong lesion detection capabilities with an F1-score of 0.64 and 0.5 in and out of the domain, respectively. We also analyze internal model features and model errors for a better understanding of AI decision-making. Our study examines how data variability, lesion ambiguity, and protocol differences impact model performance, offering future recommendations to address these barriers to clinical adoption. To reinforce the reproducibility, the implementation and models will be publicly accessible and ready to use at https://github.com/Medical-Image-Analysis-Laboratory/ and https://doi.org/10.5281/zenodo.15911797.

Direct-to-Treatment Adaptive Radiation Therapy: Live Planning of Spine Metastases Using Novel Cone Beam Computed Tomography.

McGrath KM, MacDonald RL, Robar JL, Cherpak A

pubmed logopapersJul 15 2025
Cone beam computed tomography (CBCT)-based online adaptive radiation therapy is carried out using a synthetic CT (sCT) created through deformable registration between the patient-specific fan-beam CT, fan-beam computed tomography (FBCT), and daily CBCT. Ethos 2.0 allows for plan calculation directly on HyperSight CBCT and uses artificial intelligence-informed tools for daily contouring without the use of a priori information. This breaks an important link between daily adaptive sessions and initial reference plan preparation. This study explores adaptive radiation therapy for spine metastases without prior patient-specific imaging or treatment planning. We hypothesize that adaptive plans can be created when patient-specific positioning and anatomy is incorporated only once the patient has arrived at the treatment unit. An Ethos 2.0 emulator was used to create initial reference plans on 10 patient-specific FBCTs. Reference plans were also created using FBCTs of (1) a library patient with clinically acceptable contours and (2) a water-equivalent phantom with placeholder contours. Adaptive sessions were simulated for each patient using the 3 different starting points. Resulting adaptive plans were compared with determine the significance of patient-specific information prior to the start of treatment. The library patient and phantom reference plans did not generate adaptive plans that differed significantly from the standard workflow for all clinical constraints for target coverage and organ at risk sparing (P > .2). Gamma comparison between the 3 adaptive plans for each patient (3%/3 mm) demonstrated overall similarity of dose distributions (pass rate > 95%), for all but 2 cases. Failures occurred mainly in low-dose regions, highlighting difference in fluence used to achieve the same clinical goals. This study confirmed feasibility of a procedure for treatment of spine metastases that does not rely on previously acquired patient-specific imaging, contours or plan. Reference-free direct-to-treatment workflows are possible and can condense a multistep process to a single location with dedicated resources.
Page 4 of 14137 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.