Sort by:
Page 4 of 27270 results

Artificial intelligence-powered software outperforms interventional cardiologists in assessment of IVUS-based stent optimization.

Rubio PM, Garcia-Garcia HM, Galo J, Chaturvedi A, Case BC, Mintz GS, Ben-Dor I, Hashim H, Waksman R

pubmed logopapersJul 26 2025
Optimal stent deployment assessed by intravascular ultrasound (IVUS) is associated with improved outcomes after percutaneous coronary intervention (PCI). However, IVUS remains underutilized due to its time-consuming analysis and reliance on operator expertise. AVVIGO™+, an FDA-approved artificial intelligence (AI) software, offers automated lesion assessment, but its performance for stent evaluation has not been thoroughly investigated. To assess whether an artificial intelligence-powered software (AVVIGO™+) provides a superior evaluation of IVUS-based stent expansion index (%Stent expansion = Minimum Stent Area (MSA) / Distal reference lumen area) and geographic miss (i.e. >50 % plaque burden - PB - at stent edges) compared to the current gold standard method performed by interventional cardiologists (IC), defined as frame-by-frame visual assessment by interventional cardiologists, selecting the MSA and the reference frame with the largest lumen area within 5 mm of the stent edge, following expert consensus. This retrospective study included 60 patients (47,997 IVUS frames) who underwent IVUS guided PCI, independently analyzed by IC and AVVIGO™+. Assessments included minimum stent area (MSA), stent expansion index, and PB at proximal and distal reference segments. For expansion, a threshold of 80 % was used to define suboptimal results. The time required for expansion analysis was recorded for both methods. Concordance, absolute and relative differences were evaluated. AVVIGO™ + consistently identified lower mean expansion (70.3 %) vs. IC (91.2 %), (p < 0.0001), primarily due to detecting frames with smaller MSA values (5.94 vs. 7.19 mm<sup>2</sup>, p = 0.0053). This led to 25 discordant cases in which AVVIGO™ + reported suboptimal expansion while IC classified the result as adequate. The analysis time was significantly shorter with AVVIGO™ + (0.76 ± 0.39 min) vs IC (1.89 ± 0.62 min) (p < 0.0001), representing a 59.7 % reduction. For geographic miss, AVVIGO™ + reported higher PB than IC at both distal (51.8 % vs. 43.0 %, p < 0.0001) and proximal (50.0 % vs. 43.0 %, p = 0.0083) segments. When applying the 50 % PB threshold, AVVIGO™ + identified PB ≥50 % not seen by IC in 12 cases (6 distal, 6 proximal). AVVIGO™ + demonstrated improved detection of suboptimal stent expansion and geographic miss compared to interventional cardiologists, while also significantly reducing analysis time. These findings suggest that AI-based platforms may offer a more reliable and efficient approach to IVUS-guided stent optimization, with potential to enhance consistency in clinical practice.

Accelerating cardiac radial-MRI: Fully polar based technique using compressed sensing and deep learning.

Ghodrati V, Duan J, Ali F, Bedayat A, Prosper A, Bydder M

pubmed logopapersJul 26 2025
Fast radial-MRI approaches based on compressed sensing (CS) and deep learning (DL) often use non-uniform fast Fourier transform (NUFFT) as the forward imaging operator, which might introduce interpolation errors and reduce image quality. Using the polar Fourier transform (PFT), we developed fully polar CS and DL algorithms for fast 2D cardiac radial-MRI. Our methods directly reconstruct images in polar spatial space from polar k-space data, eliminating frequency interpolation and ensuring an easy-to-compute data consistency term for the DL framework via the variable splitting (VS) scheme. Furthermore, PFT reconstruction produces initial images with fewer artifacts in a reduced field of view, making it a better starting point for CS and DL algorithms, especially for dynamic imaging, where information from a small region of interest is critical, as opposed to NUFFT, which often results in global streaking artifacts. In the cardiac region, PFT-based CS technique outperformed NUFFT-based CS at acceleration rates of 5x (mean SSIM: 0.8831 vs. 0.8526), 10x (0.8195 vs. 0.7981), and 15x (0.7720 vs. 0.7503). Our PFT(VS)-DL technique outperformed the NUFFT(GD)-based DL method, which used unrolled gradient descent with the NUFFT as the forward imaging operator, with mean SSIM scores of 0.8914 versus 0.8617 at 10x and 0.8470 versus 0.8301 at 15x. Radiological assessments revealed that PFT(VS)-based DL scored 2.9±0.30 and 2.73±0.45 at 5x and 10x, whereas NUFFT(GD)-based DL scored 2.7±0.47 and 2.40±0.50, respectively. Our methods suggest a promising alternative to NUFFT-based fast radial-MRI for dynamic imaging, prioritizing reconstruction quality in a small region of interest over whole image quality.

A multi-dynamic low-rank deep image prior (ML-DIP) for real-time 3D cardiovascular MRI

Chong Chen, Marc Vornehm, Preethi Chandrasekaran, Muhammad A. Sultan, Syed M. Arshad, Yingmin Liu, Yuchi Han, Rizwan Ahmad

arxiv logopreprintJul 25 2025
Purpose: To develop a reconstruction framework for 3D real-time cine cardiovascular magnetic resonance (CMR) from highly undersampled data without requiring fully sampled training data. Methods: We developed a multi-dynamic low-rank deep image prior (ML-DIP) framework that models spatial image content and temporal deformation fields using separate neural networks. These networks are optimized per scan to reconstruct the dynamic image series directly from undersampled k-space data. ML-DIP was evaluated on (i) a 3D cine digital phantom with simulated premature ventricular contractions (PVCs), (ii) ten healthy subjects (including two scanned during both rest and exercise), and (iii) five patients with PVCs. Phantom results were assessed using peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). In vivo performance was evaluated by comparing left-ventricular function quantification (against 2D real-time cine) and image quality (against 2D real-time cine and binning-based 5D-Cine). Results: In the phantom study, ML-DIP achieved PSNR > 29 dB and SSIM > 0.90 for scan times as short as two minutes, while recovering cardiac motion, respiratory motion, and PVC events. In healthy subjects, ML-DIP yielded functional measurements comparable to 2D cine and higher image quality than 5D-Cine, including during exercise with high heart rates and bulk motion. In PVC patients, ML-DIP preserved beat-to-beat variability and reconstructed irregular beats, whereas 5D-Cine showed motion artifacts and information loss due to binning. Conclusion: ML-DIP enables high-quality 3D real-time CMR with acceleration factors exceeding 1,000 by learning low-rank spatial and temporal representations from undersampled data, without relying on external fully sampled training datasets.

A multi-dynamic low-rank deep image prior (ML-DIP) for real-time 3D cardiovascular MRI

Chong Chen, Marc Vornehm, Preethi Chandrasekaran, Muhammad A. Sultan, Syed M. Arshad, Yingmin Liu, Yuchi Han, Rizwan Ahmad

arxiv logopreprintJul 25 2025
Purpose: To develop a reconstruction framework for 3D real-time cine cardiovascular magnetic resonance (CMR) from highly undersampled data without requiring fully sampled training data. Methods: We developed a multi-dynamic low-rank deep image prior (ML-DIP) framework that models spatial image content and temporal deformation fields using separate neural networks. These networks are optimized per scan to reconstruct the dynamic image series directly from undersampled k-space data. ML-DIP was evaluated on (i) a 3D cine digital phantom with simulated premature ventricular contractions (PVCs), (ii) ten healthy subjects (including two scanned during both rest and exercise), and (iii) five patients with PVCs. Phantom results were assessed using peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). In vivo performance was evaluated by comparing left-ventricular function quantification (against 2D real-time cine) and image quality (against 2D real-time cine and binning-based 5D-Cine). Results: In the phantom study, ML-DIP achieved PSNR > 29 dB and SSIM > 0.90 for scan times as short as two minutes, while recovering cardiac motion, respiratory motion, and PVC events. In healthy subjects, ML-DIP yielded functional measurements comparable to 2D cine and higher image quality than 5D-Cine, including during exercise with high heart rates and bulk motion. In PVC patients, ML-DIP preserved beat-to-beat variability and reconstructed irregular beats, whereas 5D-Cine showed motion artifacts and information loss due to binning. Conclusion: ML-DIP enables high-quality 3D real-time CMR with acceleration factors exceeding 1,000 by learning low-rank spatial and temporal representations from undersampled data, without relying on external fully sampled training datasets.

Reconstruct or Generate: Exploring the Spectrum of Generative Modeling for Cardiac MRI

Niklas Bubeck, Yundi Zhang, Suprosanna Shit, Daniel Rueckert, Jiazhen Pan

arxiv logopreprintJul 25 2025
In medical imaging, generative models are increasingly relied upon for two distinct but equally critical tasks: reconstruction, where the goal is to restore medical imaging (usually inverse problems like inpainting or superresolution), and generation, where synthetic data is created to augment datasets or carry out counterfactual analysis. Despite shared architecture and learning frameworks, they prioritize different goals: generation seeks high perceptual quality and diversity, while reconstruction focuses on data fidelity and faithfulness. In this work, we introduce a "generative model zoo" and systematically analyze how modern latent diffusion models and autoregressive models navigate the reconstruction-generation spectrum. We benchmark a suite of generative models across representative cardiac medical imaging tasks, focusing on image inpainting with varying masking ratios and sampling strategies, as well as unconditional image generation. Our findings show that diffusion models offer superior perceptual quality for unconditional generation but tend to hallucinate as masking ratios increase, whereas autoregressive models maintain stable perceptual performance across masking levels, albeit with generally lower fidelity.

Extreme Cardiac MRI Analysis under Respiratory Motion: Results of the CMRxMotion Challenge

Kang Wang, Chen Qin, Zhang Shi, Haoran Wang, Xiwen Zhang, Chen Chen, Cheng Ouyang, Chengliang Dai, Yuanhan Mo, Chenchen Dai, Xutong Kuang, Ruizhe Li, Xin Chen, Xiuzheng Yue, Song Tian, Alejandro Mora-Rubio, Kumaradevan Punithakumar, Shizhan Gong, Qi Dou, Sina Amirrajab, Yasmina Al Khalil, Cian M. Scannell, Lexiaozi Fan, Huili Yang, Xiaowu Sun, Rob van der Geest, Tewodros Weldebirhan Arega, Fabrice Meriaudeau, Caner Özer, Amin Ranem, John Kalkhof, İlkay Öksüz, Anirban Mukhopadhyay, Abdul Qayyum, Moona Mazher, Steven A Niederer, Carles Garcia-Cabrera, Eric Arazo, Michal K. Grzeszczyk, Szymon Płotka, Wanqin Ma, Xiaomeng Li, Rongjun Ge, Yongqing Kou, Xinrong Chen, He Wang, Chengyan Wang, Wenjia Bai, Shuo Wang

arxiv logopreprintJul 25 2025
Deep learning models have achieved state-of-the-art performance in automated Cardiac Magnetic Resonance (CMR) analysis. However, the efficacy of these models is highly dependent on the availability of high-quality, artifact-free images. In clinical practice, CMR acquisitions are frequently degraded by respiratory motion, yet the robustness of deep learning models against such artifacts remains an underexplored problem. To promote research in this domain, we organized the MICCAI CMRxMotion challenge. We curated and publicly released a dataset of 320 CMR cine series from 40 healthy volunteers who performed specific breathing protocols to induce a controlled spectrum of motion artifacts. The challenge comprised two tasks: 1) automated image quality assessment to classify images based on motion severity, and 2) robust myocardial segmentation in the presence of motion artifacts. A total of 22 algorithms were submitted and evaluated on the two designated tasks. This paper presents a comprehensive overview of the challenge design and dataset, reports the evaluation results for the top-performing methods, and further investigates the impact of motion artifacts on five clinically relevant biomarkers. All resources and code are publicly available at: https://github.com/CMRxMotion

Deep Learning-Based Multi-View Echocardiographic Framework for Comprehensive Diagnosis of Pericardial Disease

Jeong, S., Moon, I., Jeon, J., Jeong, D., Lee, J., kim, J., Lee, S.-A., Jang, Y., Yoon, Y. E., Chang, H.-J.

medrxiv logopreprintJul 25 2025
BackgroundPericardial disease exhibits a wide clinical spectrum, ranging from mild effusions to life-threatening tamponade or constriction pericarditis. While transthoracic echocardiography (TTE) is the primary diagnostic modality, its effectiveness is limited by operator dependence and incomplete evaluation of functional impact. Existing artificial intelligence models focus primarily on effusion detection, lacking comprehensive disease assessment. MethodsWe developed a deep learning (DL)-based framework that sequentially assesses pericardial disease: (1) morphological changes, including pericardial effusion amount (normal/small/moderate/large) and pericardial thickening or adhesion (yes/no), using five B-mode views, and (2) hemodynamic significance (yes/no), incorporating additional inputs from Doppler and inferior vena cava measurements. The developmental dataset comprises 2,253 TTEs from multiple Korean institutions (225 for internal testing), and the independent external test set consists of 274 TTEs. ResultsIn the internal test set, the model achieved diagnostic accuracy of 81.8-97.3% for pericardial effusion classification, 91.6% for pericardial thickening/adhesion, and 86.2% for hemodynamic significance. Corresponding accuracy in the external test set was 80.3-94.2%, 94.5%, and 85.5%, respectively. Area under the receiver operating curves (AUROCs) for the three tasks in the internal test set was 0.92-0.99, 0.90, and 0.79; and in the external test set, 0.95-0.98, 0.85, and 0.76. Sensitivity for detecting pericardial thickening/adhesion and hemodynamic significance was modest (66.7% and 68.8% in the internal test set), but improved substantially when cases with poor image quality were excluded (77.3%, and 80.8%). Similar performance gains were observed in subgroups with complete target views and a higher number of available video clips. ConclusionsThis study presents the first DL-based TTE model capable of comprehensive evaluation of pericardial disease, integrating both morphological and functional assessments. The proposed framework demonstrated strong generalizability and aligned with the real-world diagnostic workflow. However, caution is warranted when interpreting results under suboptimal imaging conditions.

RegScore: Scoring Systems for Regression Tasks

Michal K. Grzeszczyk, Tomasz Szczepański, Pawel Renc, Siyeop Yoon, Jerome Charton, Tomasz Trzciński, Arkadiusz Sitek

arxiv logopreprintJul 25 2025
Scoring systems are widely adopted in medical applications for their inherent simplicity and transparency, particularly for classification tasks involving tabular data. In this work, we introduce RegScore, a novel, sparse, and interpretable scoring system specifically designed for regression tasks. Unlike conventional scoring systems constrained to integer-valued coefficients, RegScore leverages beam search and k-sparse ridge regression to relax these restrictions, thus enhancing predictive performance. We extend RegScore to bimodal deep learning by integrating tabular data with medical images. We utilize the classification token from the TIP (Tabular Image Pretraining) transformer to generate Personalized Linear Regression parameters and a Personalized RegScore, enabling individualized scoring. We demonstrate the effectiveness of RegScore by estimating mean Pulmonary Artery Pressure using tabular data and further refine these estimates by incorporating cardiac MRI images. Experimental results show that RegScore and its personalized bimodal extensions achieve performance comparable to, or better than, state-of-the-art black-box models. Our method provides a transparent and interpretable approach for regression tasks in clinical settings, promoting more informed and trustworthy decision-making. We provide our code at https://github.com/SanoScience/RegScore.

CTA-Derived Plaque Characteristics and Risk of Acute Coronary Syndrome in Patients With Coronary Artery Calcium Score of Zero: Insights From the ICONIC Trial.

Jonas RA, Nurmohamed NS, Crabtree TR, Aquino M, Jennings RS, Choi AD, Lin FY, Lee SE, Andreini D, Bax J, Cademartiri F, Chinnaiyan K, Chow BJW, Conte E, Cury R, Feuchtner G, Hadamitzky M, Kim YJ, Maffei E, Marques H, Plank F, Pontone G, van Rosendael AR, Villines TC, Al'Aref SJ, Baskaran L, Cho I, Danad I, Heo R, Lee JH, Rizvi A, Stuijfzand WJ, Sung JM, Park HB, Budoff MJ, Samady H, Shaw LJ, Stone PH, Virmani R, Narula J, Min JK, Earls JP, Chang HJ

pubmed logopapersJul 23 2025
<b>BACKGROUND</b>. Coronary artery calcium (CAC) scoring is used to stratify acute coronary syndrome (ACS) risk. Nonetheless, patients with a CAC score of zero (CAC<sub>0</sub>) remain at risk from noncalcified plaque components. <b>OBJECTIVE</b>. The purpose of this study was to explore CTA-derived coronary artery plaque characteristics in symptomatic patients with CAC<sub>0</sub> who subsequently have ACS through comparisons with patients with a CAC score greater than 0 (CAC<sub>> 0</sub>) who subsequently have ACS as well as with patients with CAC<sub>0</sub> who do not subsequently have ACS. <b>METHODS</b>. This study entailed a secondary retrospective analysis of prior prospective registry data. The international multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter) registry collected longitudinal observational data on symptomatic patients who underwent clinically indicated coronary CTA from January 2004 to May 2010. ICONIC (Incident Coronary Syndromes Identified by CT) was a nested cohort study conducted within CONFIRM that identified patients without known coronary artery disease (CAD) at the time of CTA who did and did not subsequently have ACS (i.e., the ACS and control groups, respectively) and who were propensity matched in a 1:1 ratio on the basis of CAD risk factors and CAD severity on CTA. The present ICONIC substudy selected matched patients in the ACS and control groups who both had documented CAC scores. CTA examinations were analyzed using artificial intelligence software for automated quantitative plaque assessment. In the ACS group, invasive angiography findings were used to identify culprit lesions. <b>RESULTS</b>. The present study included 216 patients (mean age, 55.6 years; 91 women and 125 men), with 108 patients in each of the ACS and control groups. In the ACS group, 23% (<i>n</i> = 25) of patients had CAC<sub>0</sub>. In the ACS group, culprit lesions in the subsets of patients with CAC<sub>0</sub> and CAC<sub>> 0</sub> showed no significant differences in fibrous, fibrofatty, or necrotic-core plaque volumes (<i>p</i> > .05). In the CAC<sub>0</sub> subset, patients with ACS, compared with control patients, had greater mean (± SD) fibrous plaque volume (29.4 ± 42.0 vs 5.5 ± 15.2 mm<sup>3</sup>, <i>p</i> < .001), fibrofatty plaque volume (27.3 ± 52.2 vs 1.3 ± 3.7 mm<sup>3</sup>, <i>p</i> < .001), and necrotic-core plaque volume (2.8 ± 6.4 vs 0.0 ± 0.1 mm<sup>3</sup>, <i>p</i> < .001). <b>CONCLUSION</b>. After propensity-score matching, 23% of patients with ACS had CAC<sub>0</sub>. Patients with CAC<sub>0</sub> in the ACS and control groups showed significant differences in volumes of noncalcified plaque components. <b>CLINICAL IMPACT</b>. Methods that identify and quantify noncalcified plaque forms may help characterize ACS risk in symptomatic patients with CAC<sub>0</sub>.

Back to the Future-Cardiovascular Imaging From 1966 to Today and Tomorrow.

Wintersperger BJ, Alkadhi H, Wildberger JE

pubmed logopapersJul 23 2025
This article, on the 60th anniversary of the journal Investigative Radiology, a journal dedicated to cutting-edge imaging technology, discusses key historical milestones in CT and MRI technology, as well as the ongoing advancement of contrast agent development for cardiovascular imaging over the past decades. It specifically highlights recent developments and the current state-of-the-art technology, including photon-counting detector CT and artificial intelligence, which will further push the boundaries of cardiovascular imaging. What were once ideas and visions have become today's clinical reality for the benefit of patients, and imaging technology will continue to evolve and transform modern medicine.
Page 4 of 27270 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.