Sort by:
Page 4 of 16155 results

Impact of Deep Learning-Based Image Conversion on Fully Automated Coronary Artery Calcium Scoring Using Thin-Slice, Sharp-Kernel, Non-Gated, Low-Dose Chest CT Scans: A Multi-Center Study.

Kim C, Hong S, Choi H, Yoo WS, Kim JY, Chang S, Park CH, Hong SJ, Yang DH, Yong HS, van Assen M, De Cecco CN, Suh YJ

pubmed logopapersJun 13 2025
To evaluate the impact of deep learning-based image conversion on the accuracy of automated coronary artery calcium quantification using thin-slice, sharp-kernel, non-gated, low-dose chest computed tomography (LDCT) images collected from multiple institutions. A total of 225 pairs of LDCT and calcium scoring CT (CSCT) images scanned at 120 kVp and acquired from the same patient within a 6-month interval were retrospectively collected from four institutions. Image conversion was performed for LDCT images using proprietary software programs to simulate conventional CSCT. This process included 1) deep learning-based kernel conversion of low-dose, high-frequency, sharp kernels to simulate standard-dose, low-frequency kernels, and 2) thickness conversion using the raysum method to convert 1-mm or 1.25-mm thickness images to 3-mm thickness. Automated Agaston scoring was conducted on the LDCT scans before (LDCT-Org<sub>auto</sub>) and after the image conversion (LDCT-CONV<sub>auto</sub>). Manual scoring was performed on the CSCT images (CSCT<sub>manual</sub>) and used as a reference standard. The accuracy of automated Agaston scores and risk severity categorization based on the automated scoring on LDCT scans was analyzed compared to the reference standard, using the Bland-Altman analysis, concordance correlation coefficient (CCC), and weighted kappa (κ) statistic. LDCT-CONV<sub>auto</sub> demonstrated a reduced bias for Agaston score, compared with CSCT<sub>manual</sub>, than LDCT-Org<sub>auto</sub> did (-3.45 vs. 206.7). LDCT-CONV<sub>auto</sub> showed a higher CCC than LDCT-Org<sub>auto</sub> did (0.881 [95% confidence interval {CI}, 0.750-0.960] vs. 0.269 [95% CI, 0.129-0.430]). In terms of risk category assignment, LDCT-Org<sub>auto</sub> exhibited poor agreement with CSCT<sub>manual</sub> (weighted κ = 0.115 [95% CI, 0.082-0.154]), whereas LDCT-CONV<sub>auto</sub> achieved good agreement (weighted κ = 0.792 [95% CI, 0.731-0.847]). Deep learning-based conversion of LDCT images originally obtained with thin slices and a sharp kernel can enhance the accuracy of automated coronary artery calcium score measurement using the images.

Long-term prognostic value of the CT-derived fractional flow reserve combined with atherosclerotic burden in patients with non-obstructive coronary artery disease.

Wang Z, Li Z, Xu T, Wang M, Xu L, Zeng Y

pubmed logopapersJun 13 2025
The long-term prognostic significance of the coronary computed tomography angiography (CCTA)-derived fractional flow reserve (CT-FFR) for non-obstructive coronary artery disease (CAD) is uncertain. We aimed to investigate the additional prognostic value of CT-FFR beyond CCTA-defined atherosclerotic burden for long-term outcomes. Consecutive patients with suspected stable CAD were candidates for this retrospective cohort study. Deep-learning-based vessel-specific CT-FFR was calculated. All patients enrolled were followed for at least 5 years. The primary outcome was major adverse cardiovascular events (MACE). Predictive abilities for MACE were compared among three models (model 1, constructed using clinical variables; model 2, model 1 + CCTA-derived atherosclerotic burden (Leiden risk score and segment involvement score); and model 3, model 2 + CT-FFR). A total of 1944 patients (median age, 59 (53-65) years; 53.0% men) were included. During a median follow-up time of 73.4 (71.2-79.7) months, 64 patients (3.3%) experienced MACE. In multivariate-adjusted Cox models, CT-FFR ≤ 0.80 (HR: 7.18; 95% CI: 4.25-12.12; p < 0.001) was a robust and independent predictor for MACE. The discriminant ability was higher in model 2 than in model 1 (C-index, 0.76 vs. 0.68; p = 0.001) and was further promoted by adding CT-FFR to model 3 (C-index, 0.83 vs. 0.76; p < 0.001). Integrated discrimination improvement (IDI) was 0.033 (p = 0.022) for model 2 beyond model 1. Of note, compared with model 2, model 3 also exhibited improved discrimination (IDI = 0.056; p < 0.001). In patients with non-obstructive CAD, CT-FFR provides robust and incremental prognostic information for predicting long-term outcomes. The combined model including CT-FFR and CCTA-defined atherosclerotic burden exhibits improved prediction abilities, which is helpful for risk stratification. Question Prognostic significance of the CT-fractional flow reserve (FFR) in non-obstructive coronary artery disease for long-term outcomes merits further investigation. Findings Our data strongly emphasized the independent and additional predictive value of CT-FFR beyond coronary CTA-defined atherosclerotic burden and clinical risk factors. Clinical relevance The new combined predictive model incorporating CT-FFR can be satisfactorily used for risk stratification of patients with non-obstructive coronary artery disease by identifying those who are truly suitable for subsequent high-intensity preventative therapies and extensive follow-up for prognostic reasons.

The Machine Learning Models in Major Cardiovascular Adverse Events Prediction Based on Coronary Computed Tomography Angiography: Systematic Review.

Ma Y, Li M, Wu H

pubmed logopapersJun 13 2025
Coronary computed tomography angiography (CCTA) has emerged as the first-line noninvasive imaging test for patients at high risk of coronary artery disease (CAD). When combined with machine learning (ML), it provides more valid evidence in diagnosing major adverse cardiovascular events (MACEs). Radiomics provides informative multidimensional features that can help identify high-risk populations and can improve the diagnostic performance of CCTA. However, its role in predicting MACEs remains highly debated. We evaluated the diagnostic value of ML models constructed using radiomic features extracted from CCTA in predicting MACEs, and compared the performance of different learning algorithms and models, thereby providing clinical recommendations for the diagnosis, treatment, and prognosis of MACEs. We comprehensively searched 5 online databases, Cochrane Library, Web of Science, Elsevier, CNKI, and PubMed, up to September 10, 2024, for original studies that used ML models among patients who underwent CCTA to predict MACEs and reported clinical outcomes and endpoints related to it. Risk of bias in the ML models was assessed by the Prediction Model Risk of Bias Assessment Tool, while the radiomics quality score (RQS) was used to evaluate the methodological quality of the radiomics prediction model development and validation. We also followed the TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) guidelines to ensure transparency of ML models included. Meta-analysis was performed using Meta-DiSc software (version 1.4), which included the I² score and Cochran Q test, along with StataMP 17 (StataCorp) to assess heterogeneity and publication bias. Due to the high heterogeneity observed, subgroup analysis was conducted based on different model groups. Ten studies were included in the analysis, 5 (50%) of which differentiated between training and testing groups, where the training set collected 17 kinds of models and the testing set gathered 26 models. The pooled area under the receiver operating characteristic (AUROC) curve for ML models predicting MACEs was 0.7879 in the training set and 0.7981 in the testing set. Logistic regression (LR), the most commonly used algorithm, achieved an AUROC of 0.8229 in the testing group and 0.7983 in the training group. Non-LR models yielded AUROCs of 0.7390 in the testing set and 0.7648 in the training set, while the random forest (RF) models reached an AUROC of 0.8444 in the training group. Study limitations included a limited number of studies, high heterogeneity, and the types of included studies. The performance of ML models for predicting MACEs was found to be superior to that of general models based on basic feature extraction and integration from CCTA. Specifically, LR-based ML diagnostic models demonstrated significant clinical potential, particularly when combined with clinical features, and are worth further validation through more clinical trials. PROSPERO CRD42024596364; https://www.crd.york.ac.uk/PROSPERO/view/CRD42024596364.

AI-based identification of patients who benefit from revascularization: a multicenter study

Zhang, W., Miller, R. J., Patel, K., Shanbhag, A., Liang, J., Lemley, M., Ramirez, G., Builoff, V., Yi, J., Zhou, J., Kavanagh, P., Acampa, W., Bateman, T. M., Di Carli, M. F., Dorbala, S., Einstein, A. J., Fish, M. B., Hauser, M. T., Ruddy, T., Kaufmann, P. A., Miller, E. J., Sharir, T., Martins, M., Halcox, J., Chareonthaitawee, P., Dey, D., Berman, D., Slomka, P.

medrxiv logopreprintJun 12 2025
Background and AimsRevascularization in stable coronary artery disease often relies on ischemia severity, but we introduce an AI-driven approach that uses clinical and imaging data to estimate individualized treatment effects and guide personalized decisions. MethodsUsing a large, international registry from 13 centers, we developed an AI model to estimate individual treatment effects by simulating outcomes under alternative therapeutic strategies. The model was trained on an internal cohort constructed using 1:1 propensity score matching to emulate randomized controlled trials (RCTs), creating balanced patient pairs in which only the treatment strategy--early revascularization (defined as any procedure within 90 days of MPI) versus medical therapy--differed. This design allowed the model to estimate individualized treatment effects, forming the basis for counterfactual reasoning at the patient level. We then derived the AI-REVASC score, which quantifies the potential benefit, for each patient, of early revascularization. The score was validated in the held-out testing cohort using Cox regression. ResultsOf 45,252 patients, 19,935 (44.1%) were female, median age 65 (IQR: 57-73). During a median follow-up of 3.6 years (IQR: 2.7-4.9), 4,323 (9.6%) experienced MI or death. The AI model identified a group (n=1,335, 5.9%) that benefits from early revascularization with a propensity-adjusted hazard ratio of 0.50 (95% CI: 0.25-1.00). Patients identified for early revascularization had higher prevalence of hypertension, diabetes, dyslipidemia, and lower LVEF. ConclusionsThis study pioneers a scalable, data-driven approach that emulates randomized trials using retrospective data. The AI-REVASC score enables precision revascularization decisions where guidelines and RCTs fall short. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=104 SRC="FIGDIR/small/25329295v1_ufig1.gif" ALT="Figure 1"> View larger version (31K): [email protected]@1df75d8org.highwire.dtl.DTLVardef@1b1ce68org.highwire.dtl.DTLVardef@663cdf_HPS_FORMAT_FIGEXP M_FIG C_FIG

CT derived fractional flow reserve: Part 2 - Critical appraisal of the literature.

Rodriguez-Lozano PF, Waheed A, Evangelou S, Kolossváry M, Shaikh K, Siddiqui S, Stipp L, Lakshmanan S, Wu EH, Nurmohamed NS, Orbach A, Baliyan V, de Matos JFRG, Trivedi SJ, Madan N, Villines TC, Ihdayhid AR

pubmed logopapersJun 12 2025
The integration of computed tomography-derived fractional flow reserve (CT-FFR), utilizing computational fluid dynamics and artificial intelligence (AI) in routine coronary computed tomographic angiography (CCTA), presents a promising approach to enhance evaluations of functional lesion severity. Extensive evidence underscores the diagnostic accuracy, prognostic significance, and clinical relevance of CT-FFR, prompting recent clinical guidelines to recommend its combined use with CCTA for selected individuals with with intermediate stenosis on CCTA and stable or acute chest pain. This manuscript critically examines the existing clinical evidence, evaluates the diagnostic performance, and outlines future perspectives for integrating noninvasive assessments of coronary anatomy and physiology. Furthermore, it serves as a practical guide for medical imaging professionals by addressing common pitfalls and challenges associated with CT-FFR while proposing potential solutions to facilitate its successful implementation in clinical practice.

Modality-AGnostic Image Cascade (MAGIC) for Multi-Modality Cardiac Substructure Segmentation

Nicholas Summerfield, Qisheng He, Alex Kuo, Ahmed I. Ghanem, Simeng Zhu, Chase Ruff, Joshua Pan, Anudeep Kumar, Prashant Nagpal, Jiwei Zhao, Ming Dong, Carri K. Glide-Hurst

arxiv logopreprintJun 12 2025
Cardiac substructures are essential in thoracic radiation therapy planning to minimize risk of radiation-induced heart disease. Deep learning (DL) offers efficient methods to reduce contouring burden but lacks generalizability across different modalities and overlapping structures. This work introduces and validates a Modality-AGnostic Image Cascade (MAGIC) for comprehensive and multi-modal cardiac substructure segmentation. MAGIC is implemented through replicated encoding and decoding branches of an nnU-Net-based, U-shaped backbone conserving the function of a single model. Twenty cardiac substructures (heart, chambers, great vessels (GVs), valves, coronary arteries (CAs), and conduction nodes) from simulation CT (Sim-CT), low-field MR-Linac, and cardiac CT angiography (CCTA) modalities were manually delineated and used to train (n=76), validate (n=15), and test (n=30) MAGIC. Twelve comparison models (four segmentation subgroups across three modalities) were equivalently trained. All methods were compared for training efficiency and against reference contours using the Dice Similarity Coefficient (DSC) and two-tailed Wilcoxon Signed-Rank test (threshold, p<0.05). Average DSC scores were 0.75(0.16) for Sim-CT, 0.68(0.21) for MR-Linac, and 0.80(0.16) for CCTA. MAGIC outperforms the comparison in 57% of cases, with limited statistical differences. MAGIC offers an effective and accurate segmentation solution that is lightweight and capable of segmenting multiple modalities and overlapping structures in a single model. MAGIC further enables clinical implementation by simplifying the computational requirements and offering unparalleled flexibility for clinical settings.

DUN-SRE: Deep Unrolling Network with Spatiotemporal Rotation Equivariance for Dynamic MRI Reconstruction

Yuliang Zhu, Jing Cheng, Qi Xie, Zhuo-Xu Cui, Qingyong Zhu, Yuanyuan Liu, Xin Liu, Jianfeng Ren, Chengbo Wang, Dong Liang

arxiv logopreprintJun 12 2025
Dynamic Magnetic Resonance Imaging (MRI) exhibits transformation symmetries, including spatial rotation symmetry within individual frames and temporal symmetry along the time dimension. Explicit incorporation of these symmetry priors in the reconstruction model can significantly improve image quality, especially under aggressive undersampling scenarios. Recently, Equivariant convolutional neural network (ECNN) has shown great promise in exploiting spatial symmetry priors. However, existing ECNNs critically fail to model temporal symmetry, arguably the most universal and informative structural prior in dynamic MRI reconstruction. To tackle this issue, we propose a novel Deep Unrolling Network with Spatiotemporal Rotation Equivariance (DUN-SRE) for Dynamic MRI Reconstruction. The DUN-SRE establishes spatiotemporal equivariance through a (2+1)D equivariant convolutional architecture. In particular, it integrates both the data consistency and proximal mapping module into a unified deep unrolling framework. This architecture ensures rigorous propagation of spatiotemporal rotation symmetry constraints throughout the reconstruction process, enabling more physically accurate modeling of cardiac motion dynamics in cine MRI. In addition, a high-fidelity group filter parameterization mechanism is developed to maintain representation precision while enforcing symmetry constraints. Comprehensive experiments on Cardiac CINE MRI datasets demonstrate that DUN-SRE achieves state-of-the-art performance, particularly in preserving rotation-symmetric structures, offering strong generalization capability to a broad range of dynamic MRI reconstruction tasks.

Radiomics and machine learning for predicting valve vegetation in infective endocarditis: a comparative analysis of mitral and aortic valves using TEE imaging.

Esmaely F, Moradnejad P, Boudagh S, Bitarafan-Rajabi A

pubmed logopapersJun 12 2025
Detecting valve vegetation in infective endocarditis (IE) poses challenges, particularly with mechanical valves, because acoustic shadowing artefacts often obscure critical diagnostic details. This study aimed to classify native and prosthetic mitral and aortic valves with and without vegetation using radiomics and machine learning. 286 TEE scans from suspected IE cases (August 2023-November 2024) were analysed alongside 113 rejected IE as control cases. Frames were preprocessed using the Extreme Total Variation Bilateral (ETVB) filter, and radiomics features were extracted for classification using machine learning models, including Random Forest, Decision Tree, SVM, k-NN, and XGBoost. in order to evaluate the models, AUC, ROC curves, and Decision Curve Analysis (DCA) were used. For native mitral valves, SVM achieved the highest performance with an AUC of 0.88, a sensitivity of 0.91, and a specificity of 0.87. Mechanical mitral valves also showed optimal results with SVM (AUC: 0.85, sensitivity: 0.73, specificity: 0.92). Native aortic valves were best classified using SVM (AUC: 0.86, sensitivity: 0.87, specificity: 0.86), while Random Forest excelled for mechanical aortic valves (AUC: 0.81, sensitivity: 0.89, specificity: 0.78). These findings suggest that combining the models with the clinician's report may enhance the diagnostic accuracy of TEE, particularly in the absence of advanced imaging methods like PET/CT.

Automated Segmentation of Thoracic Aortic Lumen and Vessel Wall on 3D Bright- and Black-Blood MRI using nnU-Net.

Cesario M, Littlewood SJ, Nadel J, Fletcher TJ, Fotaki A, Castillo-Passi C, Hajhosseiny R, Pouliopoulos J, Jabbour A, Olivero R, Rodríguez-Palomares J, Kooi ME, Prieto C, Botnar RM

pubmed logopapersJun 11 2025
Magnetic resonance angiography (MRA) is an important tool for aortic assessment in several cardiovascular diseases. Assessment of MRA images relies on manual segmentation; a time-intensive process that is subject to operator variability. We aimed to optimize and validate two deep-learning models for automatic segmentation of the aortic lumen and vessel wall in high-resolution ECG-triggered free-breathing respiratory motion-corrected 3D bright- and black-blood MRA images. Manual segmentation, serving as the ground truth, was performed on 25 bright-blood and 15 black-blood 3D MRA image sets acquired with the iT2PrepIR-BOOST sequence (1.5T) in thoracic aortopathy patients. The training was performed with nnU-Net for bright-blood (lumen) and black-blood image sets (lumen and vessel wall). Training consisted of a 70:20:10% training: validation: testing split. Inference was run on datasets (single vendor) from different centres (UK, Spain, and Australia), sequences (iT2PrepIR-BOOST, T2 prepared CMRA, and TWIST MRA), acquired resolutions (from 0.9 mm<sup>3</sup> to 3 mm<sup>3</sup>), and field strengths (0.55T, 1.5T, and 3T). Predictive measurements comprised Dice Similarity Coefficient (DSC), and Intersection over Union (IoU). Postprocessing (3D slicer) included centreline extraction, diameter measurement, and curved planar reformatting (CPR). The optimal configuration was the 3D U-Net. Bright blood segmentation at 1.5T on iT2PrepIR-BOOST datasets (1.3 and 1.8 mm<sup>3</sup>) and 3D CMRA datasets (0.9 mm<sup>3</sup>) resulted in DSC ≥ 0.96 and IoU ≥ 0.92. For bright-blood segmentation on 3D CMRA at 0.55T, the nnUNet achieved DSC and IoU scores of 0.93 and 0.88 at 1.5 mm³, and 0.68 and 0.52 at 3.0 mm³, respectively. DSC and IoU scores of 0.89 and 0.82 were obtained for CMRA image sets (1 mm<sup>3</sup>) at 1.5T (Barcelona dataset). DSC and IoU score of the BRnnUNet model were 0.90 and 0.82 respectively for the contrast-enhanced dataset (TWIST MRA). Lumen segmentation on black blood 1.5T iT2PrepIR-BOOST image sets achieved DSC ≥ 0.95 and IoU ≥ 0.90, and vessel wall segmentation resulted in DSC ≥ 0.80 and IoU ≥ 0.67. Automated centreline tracking, diameter measurement and CPR were successfully implemented in all subjects. Automated aortic lumen and wall segmentation on 3D bright- and black-blood image sets demonstrated excellent agreement with ground truth. This technique demonstrates a fast and comprehensive assessment of aortic morphology with great potential for future clinical application in various cardiovascular diseases.

DCD: A Semantic Segmentation Model for Fetal Ultrasound Four-Chamber View

Donglian Li, Hui Guo, Minglang Chen, Huizhen Chen, Jialing Chen, Bocheng Liang, Pengchen Liang, Ying Tan

arxiv logopreprintJun 10 2025
Accurate segmentation of anatomical structures in the apical four-chamber (A4C) view of fetal echocardiography is essential for early diagnosis and prenatal evaluation of congenital heart disease (CHD). However, precise segmentation remains challenging due to ultrasound artifacts, speckle noise, anatomical variability, and boundary ambiguity across different gestational stages. To reduce the workload of sonographers and enhance segmentation accuracy, we propose DCD, an advanced deep learning-based model for automatic segmentation of key anatomical structures in the fetal A4C view. Our model incorporates a Dense Atrous Spatial Pyramid Pooling (Dense ASPP) module, enabling superior multi-scale feature extraction, and a Convolutional Block Attention Module (CBAM) to enhance adaptive feature representation. By effectively capturing both local and global contextual information, DCD achieves precise and robust segmentation, contributing to improved prenatal cardiac assessment.
Page 4 of 16155 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.