Comparative analysis of open-source against commercial AI-based segmentation models for online adaptive MR-guided radiotherapy.
Langner D, Nachbar M, Russo ML, Boeke S, Gani C, Niyazi M, Thorwarth D
•papers•May 8 2025Online adaptive magnetic resonance-guided radiotherapy (MRgRT) has emerged as a state-of-the-art treatment option for multiple tumour entities, accounting for daily anatomical and tumour volume changes, thus allowing sparing of relevant organs at risk (OARs). However, the annotation of treatment-relevant anatomical structures in context of online plan adaptation remains challenging, often relying on commercial segmentation solutions due to limited availability of clinically validated alternatives. The aim of this study was to investigate whether an open-source artificial intelligence (AI) segmentation network can compete with the annotation accuracy of a commercial solution, both trained on the identical dataset, questioning the need for commercial models in clinical practice. For 47 pelvic patients, T2w MR imaging data acquired on a 1.5 T MR-Linac were manually contoured, identifying prostate, seminal vesicles, rectum, anal canal, bladder, penile bulb, and bony structures. These training data were used for the generation of an in-house AI segmentation model, a nnU-Net with residual encoder architecture featuring a streamlined single image inference pipeline, and re-training of a commercial solution. For quantitative evaluation, 20 MR images were contoured by a radiation oncologist, considered as ground truth contours (GTC) and compared with the in-house/commercial AI-based contours (iAIC/cAIC) using Dice Similarity Coefficient (DSC), 95% Hausdorff distances (HD95), and surface DSC (sDSC). For qualitative evaluation, four radiation oncologists assessed the usability of OAR/target iAIC within an online adaptive workflow using a four-point Likert scale: (1) acceptable without modification, (2) requiring minor adjustments, (3) requiring major adjustments, and (4) not usable. Patient-individual annotations were generated in a median [range] time of 23 [16-34] s for iAIC and 152 [121-198] s for cAIC, respectively. OARs showed a maximum median DSC of 0.97/0.97 (iAIC/cAIC) for bladder and minimum median DSC of 0.78/0.79 (iAIC/cAIC) for anal canal/penile bulb. Maximal respectively minimal median HD95 were detected for rectum with 17.3/20.6 mm (iAIC/cAIC) and for bladder with 5.6/6.0 mm (iAIC/cAIC). Overall, the average median DSC/HD95 values were 0.87/11.8mm (iAIC) and 0.83/10.2mm (cAIC) for OAR/targets and 0.90/11.9mm (iAIC) and 0.91/16.5mm (cAIC) for bony structures. For a tolerance of 3 mm, the highest and lowest sDSC were determined for bladder (iAIC:1.00, cAIC:0.99) and prostate in iAIC (0.89) and anal canal in cAIC (0.80), respectively. Qualitatively, 84.8% of analysed contours were considered as clinically acceptable for iAIC, while 12.9% required minor and 2.3% major adjustments or were classed as unusable. Contour-specific analysis showed that iAIC achieved the highest mean scores with 1.00 for the anal canal and the lowest with 1.61 for the prostate. This study demonstrates that open-source segmentation framework can achieve comparable annotation accuracy to commercial solutions for pelvic anatomy in online adaptive MRgRT. The adapted framework not only maintained high segmentation performance, with 84.8% of contours accepted by physicians or requiring only minor corrections (12.9%) but also enhanced clinical workflow efficiency of online adaptive MRgRT through reduced inference times. These findings establish open-source frameworks as viable alternatives to commercial systems in supervised clinical workflows.