Sort by:
Page 39 of 72720 results

Deep learning-based MRI reconstruction with Artificial Fourier Transform Network (AFTNet).

Yang Y, Zhang Y, Li Z, Tian JS, Dagommer M, Guo J

pubmed logopapersJun 1 2025
Deep complex-valued neural networks (CVNNs) provide a powerful way to leverage complex number operations and representations and have succeeded in several phase-based applications. However, previous networks have not fully explored the impact of complex-valued networks in the frequency domain. Here, we introduce a unified complex-valued deep learning framework - Artificial Fourier Transform Network (AFTNet) - which combines domain-manifold learning and CVNNs. AFTNet can be readily used to solve image inverse problems in domain transformation, especially for accelerated magnetic resonance imaging (MRI) reconstruction and other applications. While conventional methods typically utilize magnitude images or treat the real and imaginary components of k-space data as separate channels, our approach directly processes raw k-space data in the frequency domain, utilizing complex-valued operations. This allows for a mapping between the frequency (k-space) and image domain to be determined through cross-domain learning. We show that AFTNet achieves superior accelerated MRI reconstruction compared to existing approaches. Furthermore, our approach can be applied to various tasks, such as denoised magnetic resonance spectroscopy (MRS) reconstruction and datasets with various contrasts. The AFTNet presented here is a valuable preprocessing component for different preclinical studies and provides an innovative alternative for solving inverse problems in imaging and spectroscopy. The code is available at: https://github.com/yanting-yang/AFT-Net.

DeepValve: The first automatic detection pipeline for the mitral valve in Cardiac Magnetic Resonance imaging.

Monopoli G, Haas D, Singh A, Aabel EW, Ribe M, Castrini AI, Hasselberg NE, Bugge C, Five C, Haugaa K, Forsch N, Thambawita V, Balaban G, Maleckar MM

pubmed logopapersJun 1 2025
Mitral valve (MV) assessment is key to diagnosing valvular disease and to addressing its serious downstream complications. Cardiac magnetic resonance (CMR) has become an essential diagnostic tool in MV disease, offering detailed views of the valve structure and function, and overcoming the limitations of other imaging modalities. Automated detection of the MV leaflets in CMR could enable rapid and precise assessments that enhance diagnostic accuracy. To address this gap, we introduce DeepValve, the first deep learning (DL) pipeline for MV detection using CMR. Within DeepValve, we tested three valve detection models: a keypoint-regression model (UNET-REG), a segmentation model (UNET-SEG) and a hybrid model based on keypoint detection (DSNT-REG). We also propose metrics for evaluating the quality of MV detection, including Procrustes-based metrics (UNET-REG, DSNT-REG) and customized Dice-based metrics (UNET-SEG). We developed and tested our models on a clinical dataset comprising 120 CMR images from patients with confirmed MV disease (mitral valve prolapse and mitral annular disjunction). Our results show that DSNT-REG delivered the best regression performance, accurately locating landmark locations. UNET-SEG achieved satisfactory Dice and customized Dice scores, also accurately predicting valve location and topology. Overall, our work represents a critical first step towards automated MV assessment using DL in CMR and paving the way for improved clinical assessment in MV disease.

A rule-based method to automatically locate lumbar vertebral bodies on MRI images.

Xiberta P, Vila M, Ruiz M, Julià I Juanola A, Puig J, Vilanova JC, Boada I

pubmed logopapersJun 1 2025
Segmentation is a critical process in medical image interpretation. It is also essential for preparing training datasets for machine learning (ML)-based solutions. Despite technological advancements, achieving fully automatic segmentation is still challenging. User interaction is required to initiate the process, either by defining points or regions of interest, or by verifying and refining the output. One of the complex structures that requires semi-automatic segmentation procedures or manually defined training datasets is the lumbar spine. Automating the placement of a point within each lumbar vertebral body could significantly reduce user interaction in these procedures. A new method for automatically locating lumbar vertebral bodies in sagittal magnetic resonance images (MRI) is presented. The method integrates different image processing techniques and relies on the vertebral body morphology. Testing was mainly performed using 50 MRI scans that were previously annotated manually by placing a point at the centre of each lumbar vertebral body. A complementary public dataset was also used to assess robustness. Evaluation metrics included the correct labelling of each structure, the inclusion of each point within the corresponding vertebral body area, and the accuracy of the locations relative to the vertebral body centres using root mean squared error (RMSE) and mean absolute error (MAE). A one-sample Student's t-test was also performed to find the distance beyond which differences are considered significant (α = 0.05). All lumbar vertebral bodies from the primary dataset were correctly labelled, and the average RMSE and MAE between the automatic and manual locations were less than 5 mm. Distances to the vertebral body centres were found to be significantly less than 4.33 mm with a p-value < 0.05, and significantly less than half the average minimum diameter of a lumbar vertebral body with a p-value < 0.00001. Results from the complementary public dataset include high labelling and inclusion rates (85.1% and 94.3%, respectively), and similar accuracy values. The proposed method successfully achieves robust and accurate automatic placement of points within each lumbar vertebral body. The automation of this process enables the transition from semi-automatic to fully automatic methods, thus reducing error-prone and time-consuming user interaction, and facilitating the creation of training datasets for ML-based solutions.

A magnetic resonance imaging (MRI)-based deep learning radiomics model predicts recurrence-free survival in lung cancer patients after surgical resection of brain metastases.

Li B, Li H, Chen J, Xiao F, Fang X, Guo R, Liang M, Wu Z, Mao J, Shen J

pubmed logopapersJun 1 2025
To develop and validate a magnetic resonance imaging (MRI)-based deep learning radiomics model (DLRM) to predict recurrence-free survival (RFS) in lung cancer patients after surgical resection of brain metastases (BrMs). A total of 215 lung cancer patients with BrMs confirmed by surgical pathology were retrospectively included in five centres, 167 patients were assigned to the training cohort, and 48 to the external test cohort. All patients underwent regular follow-up brain MRIs. Clinical and morphological MRI models for predicting RFS were built using univariate and multivariate Cox regressions, respectively. Handcrafted and deep learning (DL) signatures were constructed from BrMs pretreatment MR images using the least absolute shrinkage and selection operator (LASSO) method, respectively. A DLRM was established by integrating the clinical and morphological MRI predictors, handcrafted and DL signatures based on the multivariate Cox regression coefficients. The Harrell C-index, area under the receiver operating characteristic curve (AUC), and Kaplan-Meier's survival analysis were used to evaluate model performance. The DLRM showed satisfactory performance in predicting RFS and 6- to 18-month intracranial recurrence in lung cancer patients after BrMs resection, achieving a C-index of 0.79 and AUCs of 0.84-0.90 in the training set and a C-index of 0.74 and AUCs of 0.71-0.85 in the external test set. The DLRM outperformed the clinical model, morphological MRI model, handcrafted signature, DL signature, and clinical-morphological MRI model in predicting RFS (P < 0.05). The DLRM successfully classified patients into high-risk and low-risk intracranial recurrence groups (P < 0.001). This MRI-based DLRM could predict RFS in lung cancer patients after surgical resection of BrMs.

Metabolic Dysfunction-Associated Steatotic Liver Disease Is Associated With Accelerated Brain Ageing: A Population-Based Study.

Wang J, Yang R, Miao Y, Zhang X, Paillard-Borg S, Fang Z, Xu W

pubmed logopapersJun 1 2025
Metabolic dysfunction-associated steatotic liver disease (MASLD) is linked to cognitive decline and dementia risk. We aimed to investigate the association between MASLD and brain ageing and explore the role of low-grade inflammation. Within the UK Biobank, 30 386 chronic neurological disorders-free participants who underwent brain magnetic resonance imaging (MRI) scans were included. Individuals were categorised into no MASLD/related SLD and MASLD/related SLD (including subtypes of MASLD, MASLD with increased alcohol intake [MetALD] and MASLD with other combined aetiology). Brain age was estimated using machine learning by 1079 brain MRI phenotypes. Brain age gap (BAG) was calculated as the difference between brain age and chronological age. Low-grade inflammation (INFLA) was calculated based on white blood cell count, platelet, neutrophil granulocyte to lymphocyte ratio and C-reactive protein. Data were analysed using linear regression and structural equation models. At baseline, 7360 (24.2%) participants had MASLD/related SLD. Compared to participants with no MASLD/related SLD, those with MASLD/related SLD had significantly larger BAG (β = 0.86, 95% CI = 0.70, 1.02), as well as those with MASLD (β = 0.59, 95% CI = 0.41, 0.77) or MetALD (β = 1.57, 95% CI = 1.31, 1.83). The association between MASLD/related SLD and larger BAG was significant across middle-aged (< 60) and older (≥ 60) adults, males and females, and APOE ɛ4 carriers and non-carriers. INFLA mediated 13.53% of the association between MASLD/related SLD and larger BAG (p < 0.001). MASLD/related SLD, as well as MASLD and MetALD, is associated with accelerated brain ageing, even among middle-aged adults and APOE ɛ4 non-carriers. Low-grade systemic inflammation may partially mediate this association.

WAND: Wavelet Analysis-Based Neural Decomposition of MRS Signals for Artifact Removal.

Merkofer JP, van de Sande DMJ, Amirrajab S, Min Nam K, van Sloun RJG, Bhogal AA

pubmed logopapersJun 1 2025
Accurate quantification of metabolites in magnetic resonance spectroscopy (MRS) is challenged by low signal-to-noise ratio (SNR), overlapping metabolites, and various artifacts. Particularly, unknown and unparameterized baseline effects obscure the quantification of low-concentration metabolites, limiting MRS reliability. This paper introduces wavelet analysis-based neural decomposition (WAND), a novel data-driven method designed to decompose MRS signals into their constituent components: metabolite-specific signals, baseline, and artifacts. WAND takes advantage of the enhanced separability of these components within the wavelet domain. The method employs a neural network, specifically a U-Net architecture, trained to predict masks for wavelet coefficients obtained through the continuous wavelet transform. These masks effectively isolate desired signal components in the wavelet domain, which are then inverse-transformed to obtain separated signals. Notably, an artifact mask is created by inverting the sum of all known signal masks, enabling WAND to capture and remove even unpredictable artifacts. The effectiveness of WAND in achieving accurate decomposition is demonstrated through numerical evaluations using simulated spectra. Furthermore, WAND's artifact removal capabilities significantly enhance the quantification accuracy of linear combination model fitting. The method's robustness is further validated using data from the 2016 MRS Fitting Challenge and in vivo experiments.

Deep learning for multiple sclerosis lesion classification and stratification using MRI.

Umirzakova S, Shakhnoza M, Sevara M, Whangbo TK

pubmed logopapersJun 1 2025
Multiple sclerosis (MS) is a chronic neurological disease characterized by inflammation, demyelination, and neurodegeneration within the central nervous system. Conventional magnetic resonance imaging (MRI) techniques often struggle to detect small or subtle lesions, particularly in challenging regions such as the cortical gray matter and brainstem. This study introduces a novel deep learning-based approach, combined with a robust preprocessing pipeline and optimized MRI protocols, to improve the precision of MS lesion classification and stratification. We designed a convolutional neural network (CNN) architecture specifically tailored for high-resolution T2-weighted imaging (T2WI), augmented by deep learning-based reconstruction (DLR) techniques. The model incorporates dual attention mechanisms, including spatial and channel attention modules, to enhance feature extraction. A comprehensive preprocessing pipeline was employed, featuring bias field correction, skull stripping, image registration, and intensity normalization. The proposed framework was trained and validated on four publicly available datasets and evaluated using precision, sensitivity, specificity, and area under the curve (AUC) metrics. The model demonstrated exceptional performance, achieving a precision of 96.27 %, sensitivity of 95.54 %, specificity of 94.70 %, and an AUC of 0.975. It outperformed existing state-of-the-art methods, particularly in detecting lesions in underdiagnosed regions such as the cortical gray matter and brainstem. The integration of advanced attention mechanisms enabled the model to focus on critical MRI features, leading to significant improvements in lesion classification and stratification. This study presents a novel and scalable approach for MS lesion detection and classification, offering a practical solution for clinical applications. By integrating advanced deep learning techniques with optimized MRI protocols, the proposed framework achieves superior diagnostic accuracy and generalizability, paving the way for enhanced patient care and more personalized treatment strategies. This work sets a new benchmark for MS diagnosis and management in both research and clinical practice.

Myo-Guide: A Machine Learning-Based Web Application for Neuromuscular Disease Diagnosis With MRI.

Verdu-Diaz J, Bolano-Díaz C, Gonzalez-Chamorro A, Fitzsimmons S, Warman-Chardon J, Kocak GS, Mucida-Alvim D, Smith IC, Vissing J, Poulsen NS, Luo S, Domínguez-González C, Bermejo-Guerrero L, Gomez-Andres D, Sotoca J, Pichiecchio A, Nicolosi S, Monforte M, Brogna C, Mercuri E, Bevilacqua JA, Díaz-Jara J, Pizarro-Galleguillos B, Krkoska P, Alonso-Pérez J, Olivé M, Niks EH, Kan HE, Lilleker J, Roberts M, Buchignani B, Shin J, Esselin F, Le Bars E, Childs AM, Malfatti E, Sarkozy A, Perry L, Sudhakar S, Zanoteli E, Di Pace FT, Matthews E, Attarian S, Bendahan D, Garibaldi M, Fionda L, Alonso-Jiménez A, Carlier R, Okhovat AA, Nafissi S, Nalini A, Vengalil S, Hollingsworth K, Marini-Bettolo C, Straub V, Tasca G, Bacardit J, Díaz-Manera J

pubmed logopapersJun 1 2025
Neuromuscular diseases (NMDs) are rare disorders characterized by progressive muscle fibre loss, leading to replacement by fibrotic and fatty tissue, muscle weakness and disability. Early diagnosis is critical for therapeutic decisions, care planning and genetic counselling. Muscle magnetic resonance imaging (MRI) has emerged as a valuable diagnostic tool by identifying characteristic patterns of muscle involvement. However, the increasing complexity of these patterns complicates their interpretation, limiting their clinical utility. Additionally, multi-study data aggregation introduces heterogeneity challenges. This study presents a novel multi-study harmonization pipeline for muscle MRI and an AI-driven diagnostic tool to assist clinicians in identifying disease-specific muscle involvement patterns. We developed a preprocessing pipeline to standardize MRI fat content across datasets, minimizing source bias. An ensemble of XGBoost models was trained to classify patients based on intramuscular fat replacement, age at MRI and sex. The SHapley Additive exPlanations (SHAP) framework was adapted to analyse model predictions and identify disease-specific muscle involvement patterns. To address class imbalance, training and evaluation were conducted using class-balanced metrics. The model's performance was compared against four expert clinicians using 14 previously unseen MRI scans. Using our harmonization approach, we curated a dataset of 2961 MRI samples from genetically confirmed cases of 20 paediatric and adult NMDs. The model achieved a balanced accuracy of 64.8% ± 3.4%, with a weighted top-3 accuracy of 84.7% ± 1.8% and top-5 accuracy of 90.2% ± 2.4%. It also identified key features relevant for differential diagnosis, aiding clinical decision-making. Compared to four expert clinicians, the model obtained the highest top-3 accuracy (75.0% ± 4.8%). The diagnostic tool has been implemented as a free web platform, providing global access to the medical community. The application of AI in muscle MRI for NMD diagnosis remains underexplored due to data scarcity. This study introduces a framework for dataset harmonization, enabling advanced computational techniques. Our findings demonstrate the potential of AI-based approaches to enhance differential diagnosis by identifying disease-specific muscle involvement patterns. The developed tool surpasses expert performance in diagnostic ranking and is accessible to clinicians worldwide via the Myo-Guide online platform.

Impact of artificial intelligence assisted lesion detection on radiologists' interpretation at multiparametric prostate MRI.

Nakrour N, Cochran RL, Mercaldo ND, Bradley W, Tsai LL, Prajapati P, Grimm R, von Busch H, Lo WC, Harisinghani MG

pubmed logopapersJun 1 2025
To compare prostate cancer lesion detection using conventional and artificial intelligence (AI)-assisted image interpretation at multiparametric MRI (mpMRI). A retrospective study of 53 consecutive patients who underwent prostate mpMRI and subsequent prostate tissue sampling was performed. Two board-certified radiologists (with 4 and 12 years of experience) blinded to the clinical information interpreted anonymized exams using the PI-RADS v2.1 framework without and with an AI-assistance tool. The AI software tool provided radiologists with gland segmentation and automated lesion detection assigning a probability score for the likelihood of the presence of clinically significant prostate cancer (csPCa). The reference standard for all cases was the prostate pathology from systematic and targeted biopsies. Statistical analyses assessed interrater agreement and compared diagnostic performances with and without AI assistance. Within the entire cohort, 42 patients (79 %) harbored Gleason-positive disease, with 25 patients (47 %) having csPCa. Radiologists' diagnostic performance for csPCa was significantly improved over conventional interpretation with AI assistance (reader A: AUC 0.82 vs. 0.72, p = 0.03; reader B: AUC 0.78 vs. 0.69, p = 0.03). Without AI assistance, 81 % (n = 36; 95 % CI: 0.89-0.91) of the lesions were scored similarly by radiologists for lesion-level characteristics, and with AI assistance, 59 % (26, 0.82-0.89) of the lesions were scored similarly. For reader A, there was a significant difference in PI-RADS scores (p = 0.02) between AI-assisted and non-assisted assessments. Signficant differences were not detected for reader B. AI-assisted prostate mMRI interpretation improved radiologist diagnostic performance over conventional interpretation independent of reader experience.

An Intelligent Model of Segmentation and Classification Using Enhanced Optimization-Based Attentive Mask RCNN and Recurrent MobileNet With LSTM for Multiple Sclerosis Types With Clinical Brain MRI.

Gopichand G, Bhargavi KN, Ramprasad MVS, Kodavanti PV, Padmavathi M

pubmed logopapersJun 1 2025
In healthcare sector, magnetic resonance imaging (MRI) images are taken for multiple sclerosis (MS) assessment, classification, and management. However, interpreting an MRI scan requires an exceptional amount of skill because abnormalities on scans are frequently inconsistent with clinical symptoms, making it difficult to convert the findings into effective treatment strategies. Furthermore, MRI is an expensive process, and its frequent utilization to monitor an illness increases healthcare costs. To overcome these drawbacks, this research employs advanced technological approaches to develop a deep learning system for classifying types of MS through clinical brain MRI scans. The major innovation of this model is to influence the convolution network with attention concept and recurrent-based deep learning for classifying the disorder; this also proposes an optimization algorithm for tuning the parameter to enhance the performance. Initially, the total images as 3427 are collected from database, in which the collected samples are categorized for training and testing phase. Here, the segmentation is carried out by adaptive and attentive-based mask regional convolution neural network (AA-MRCNN). In this phase, the MRCNN's parameters are finely tuned with an enhanced pine cone optimization algorithm (EPCOA) to guarantee outstanding efficiency. Further, the segmented image is given to recurrent MobileNet with long short term memory (RM-LSTM) for getting the classification outcomes. Through experimental analysis, this deep learning model is acquired 95.4% for accuracy, 95.3% for sensitivity, and 95.4% for specificity. Hence, these results prove that it has high potential for appropriately classifying the sclerosis disorder.
Page 39 of 72720 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.