Sort by:
Page 39 of 45448 results

A multi-modal model integrating MRI habitat and clinicopathology to predict platinum sensitivity in patients with high-grade serous ovarian cancer: a diagnostic study.

Bi Q, Ai C, Meng Q, Wang Q, Li H, Zhou A, Shi W, Lei Y, Wu Y, Song Y, Xiao Z, Li H, Qiang J

pubmed logopapersMay 20 2025
Platinum resistance of high-grade serous ovarian cancer (HGSOC) cannot currently be recognized by specific molecular biomarkers. We aimed to compare the predictive capacity of various models integrating MRI habitat, whole slide images (WSIs), and clinical parameters to predict platinum sensitivity in HGSOC patients. A retrospective study involving 998 eligible patients from four hospitals was conducted. MRI habitats were clustered using K-means algorithm on multi-parametric MRI. Following feature extraction and selection, a Habitat model was developed. Vision Transformer (ViT) and multi-instance learning were trained to derive the patch-level prediction and WSI-level prediction on hematoxylin and eosin (H&E)-stained WSIs, respectively, forming a Pathology model. Logistic regression (LR) was used to create a Clinic model. A multi-modal model integrating Clinic, Habitat, and Pathology (CHP) was constructed using Multi-Head Attention (MHA) and compared with the unimodal models and Ensemble multi-modal models. The area under the curve (AUC) and integrated discrimination improvement (IDI) value were used to assess model performance and gains. In the internal validation cohort and the external test cohort, the Habitat model showed the highest AUCs (0.722 and 0.685) compared to the Clinic model (0.683 and 0.681) and the Pathology model (0.533 and 0.565), respectively. The AUCs (0.789 and 0.807) of the multi-modal model interating CHP based on MHA were highest than those of any unimodal models and Ensemble multi-modal models, with positive IDI values. MRI-based habitat imaging showed potentials to predict platinum sensitivity in HGSOC patients. Multi-modal integration of CHP based on MHA was helpful to improve prediction performance.

Pancreas segmentation in CT scans: A novel MOMUNet based workflow.

Juwita J, Hassan GM, Datta A

pubmed logopapersMay 20 2025
Automatic pancreas segmentation in CT scans is crucial for various medical applications, including early diagnosis and computer-assisted surgery. However, existing segmentation methods remain suboptimal due to significant pancreas size variations across slices and severe class imbalance caused by the pancreas's small size and CT scanner movement during imaging. Traditional computer vision techniques struggle with these challenges, while deep learning-based approaches, despite their success in other domains, still face limitations in pancreas segmentation. To address these issues, we propose a novel, three-stage workflow that enhances segmentation accuracy and computational efficiency. First, we introduce External Contour Cropping (ECC), a background cleansing technique that mitigates class imbalance. Second, we propose a Size Ratio (SR) technique that restructures the training dataset based on the relative size of the target organ, improving the robustness of the model against anatomical variations. Third, we develop MOMUNet, an ultra-lightweight segmentation model with only 1.31 million parameters, designed for optimal performance on limited computational resources. Our proposed workflow achieves an improvement in Dice Score (DSC) of 2.56% over state-of-the-art (SOTA) models in the NIH-Pancreas dataset and 2.97% in the MSD-Pancreas dataset. Furthermore, applying the proposed model to another small organ, such as colon cancer segmentation in the MSD-Colon dataset, yielded a DSC of 68.4%, surpassing the SOTA models. These results demonstrate the effectiveness of our approach in significantly improving segmentation accuracy for small abdomen organs including pancreas and colon, making deep learning more accessible for low-resource medical facilities.

XDementNET: An Explainable Attention Based Deep Convolutional Network to Detect Alzheimer Progression from MRI data

Soyabul Islam Lincoln, Mirza Mohd Shahriar Maswood

arxiv logopreprintMay 20 2025
A common neurodegenerative disease, Alzheimer's disease requires a precise diagnosis and efficient treatment, particularly in light of escalating healthcare expenses and the expanding use of artificial intelligence in medical diagnostics. Many recent studies shows that the combination of brain Magnetic Resonance Imaging (MRI) and deep neural networks have achieved promising results for diagnosing AD. Using deep convolutional neural networks, this paper introduces a novel deep learning architecture that incorporates multiresidual blocks, specialized spatial attention blocks, grouped query attention, and multi-head attention. The study assessed the model's performance on four publicly accessible datasets and concentrated on identifying binary and multiclass issues across various categories. This paper also takes into account of the explainability of AD's progression and compared with state-of-the-art methods namely Gradient Class Activation Mapping (GradCAM), Score-CAM, Faster Score-CAM, and XGRADCAM. Our methodology consistently outperforms current approaches, achieving 99.66\% accuracy in 4-class classification, 99.63\% in 3-class classification, and 100\% in binary classification using Kaggle datasets. For Open Access Series of Imaging Studies (OASIS) datasets the accuracies are 99.92\%, 99.90\%, and 99.95\% respectively. The Alzheimer's Disease Neuroimaging Initiative-1 (ADNI-1) dataset was used for experiments in three planes (axial, sagittal, and coronal) and a combination of all planes. The study achieved accuracies of 99.08\% for axis, 99.85\% for sagittal, 99.5\% for coronal, and 99.17\% for all axis, and 97.79\% and 8.60\% respectively for ADNI-2. The network's ability to retrieve important information from MRI images is demonstrated by its excellent accuracy in categorizing AD stages.

Expert-Like Reparameterization of Heterogeneous Pyramid Receptive Fields in Efficient CNNs for Fair Medical Image Classification

Xiao Wu, Xiaoqing Zhang, Zunjie Xiao, Lingxi Hu, Risa Higashita, Jiang Liu

arxiv logopreprintMay 19 2025
Efficient convolutional neural network (CNN) architecture designs have attracted growing research interests. However, they usually apply single receptive field (RF), small asymmetric RFs, or pyramid RFs to learn different feature representations, still encountering two significant challenges in medical image classification tasks: 1) They have limitations in capturing diverse lesion characteristics efficiently, e.g., tiny, coordination, small and salient, which have unique roles on results, especially imbalanced medical image classification. 2) The predictions generated by those CNNs are often unfair/biased, bringing a high risk by employing them to real-world medical diagnosis conditions. To tackle these issues, we develop a new concept, Expert-Like Reparameterization of Heterogeneous Pyramid Receptive Fields (ERoHPRF), to simultaneously boost medical image classification performance and fairness. This concept aims to mimic the multi-expert consultation mode by applying the well-designed heterogeneous pyramid RF bags to capture different lesion characteristics effectively via convolution operations with multiple heterogeneous kernel sizes. Additionally, ERoHPRF introduces an expert-like structural reparameterization technique to merge its parameters with the two-stage strategy, ensuring competitive computation cost and inference speed through comparisons to a single RF. To manifest the effectiveness and generalization ability of ERoHPRF, we incorporate it into mainstream efficient CNN architectures. The extensive experiments show that our method maintains a better trade-off than state-of-the-art methods in terms of medical image classification, fairness, and computation overhead. The codes of this paper will be released soon.

Semiautomated segmentation of breast tumor on automatic breast ultrasound image using a large-scale model with customized modules.

Zhou Y, Ye M, Ye H, Zeng S, Shu X, Pan Y, Wu A, Liu P, Zhang G, Cai S, Chen S

pubmed logopapersMay 19 2025
To verify the capability of the Segment Anything Model for medical images in 3D (SAM-Med3D), tailored with low-rank adaptation (LoRA) strategies, in segmenting breast tumors in Automated Breast Ultrasound (ABUS) images. This retrospective study collected data from 329 patients diagnosed with breast cancer (average age 54 years). The dataset was randomly divided into training (n = 204), validation (n = 29), and test sets (n = 59). Two experienced radiologists manually annotated the regions of interest of each sample in the dataset, which served as ground truth for training and evaluating the SAM-Med3D model with additional customized modules. For semi-automatic tumor segmentation, points were randomly sampled within the lesion areas to simulate the radiologists' clicks in real-world scenarios. The segmentation performance was evaluated using the Dice coefficient. A total of 492 cases (200 from the "Tumor Detection, Segmentation, and Classification Challenge on Automated 3D Breast Ultrasound (TDSC-ABUS) 2023 challenge") were subjected to semi-automatic segmentation inference. The average Dice Similariy Coefficient (DSC) scores for the training, validation, and test sets of the Lishui dataset were 0.75, 0.78, and 0.75, respectively. The Breast Imaging Reporting and Data System (BI-RADS) categories of all samples range from BI-RADS 3 to 6, yielding an average DSC coefficient between 0.73 and 0.77. By categorizing the samples (lesion volumes ranging from 1.64 to 100.03 cm<sup>3</sup>) based on lesion size, the average DSC falls between 0.72 and 0.77.And the overall average DSC for the TDSC-ABUS 2023 challenge dataset was 0.79, with the test set achieving a sora-of-art scores of 0.79. The SAM-Med3D model with additional customized modules demonstrates good performance in semi-automatic 3D ABUS breast cancer tumor segmentation, indicating its feasibility for application in computer-aided diagnosis systems.

SMURF: Scalable method for unsupervised reconstruction of flow in 4D flow MRI

Atharva Hans, Abhishek Singh, Pavlos Vlachos, Ilias Bilionis

arxiv logopreprintMay 18 2025
We introduce SMURF, a scalable and unsupervised machine learning method for simultaneously segmenting vascular geometries and reconstructing velocity fields from 4D flow MRI data. SMURF models geometry and velocity fields using multilayer perceptron-based functions incorporating Fourier feature embeddings and random weight factorization to accelerate convergence. A measurement model connects these fields to the observed image magnitude and phase data. Maximum likelihood estimation and subsampling enable SMURF to process high-dimensional datasets efficiently. Evaluations on synthetic, in vitro, and in vivo datasets demonstrate SMURF's performance. On synthetic internal carotid artery aneurysm data derived from CFD, SMURF achieves a quarter-voxel segmentation accuracy across noise levels of up to 50%, outperforming the state-of-the-art segmentation method by up to double the accuracy. In an in vitro experiment on Poiseuille flow, SMURF reduces velocity reconstruction RMSE by approximately 34% compared to raw measurements. In in vivo internal carotid artery aneurysm data, SMURF attains nearly half-voxel segmentation accuracy relative to expert annotations and decreases median velocity divergence residuals by about 31%, with a 27% reduction in the interquartile range. These results indicate that SMURF is robust to noise, preserves flow structure, and identifies patient-specific morphological features. SMURF advances 4D flow MRI accuracy, potentially enhancing the diagnostic utility of 4D flow MRI in clinical applications.

Harnessing Artificial Intelligence for Accurate Diagnosis and Radiomics Analysis of Combined Pulmonary Fibrosis and Emphysema: Insights from a Multicenter Cohort Study

Zhang, S., Wang, H., Tang, H., Li, X., Wu, N.-W., Lang, Q., Li, B., Zhu, H., Chen, X., Chen, K., Xie, B., Zhou, A., Mo, C.

medrxiv logopreprintMay 18 2025
Combined Pulmonary Fibrosis and Emphysema (CPFE), formally recognized as a distinct pulmonary syndrome in 2022, is characterized by unique clinical features and pathogenesis that may lead to respiratory failure and death. However, the diagnosis of CPFE presents significant challenges that hinder effective treatment. Here, we assembled three-dimensional (3D) reconstruction data of the chest High-Resolution Computed Tomography (HRCT) of patients from multiple hospitals across different provinces in China, including Xiangya Hospital, West China Hospital, and Fujian Provincial Hospital. Using this dataset, we developed CPFENet, a deep learning-based diagnostic model for CPFE. It accurately differentiates CPFE from COPD, with performance comparable to that of professional radiologists. Additionally, we developed a CPFE score based on radiomic analysis of 3D CT images to quantify disease characteristics. Notably, female patients demonstrated significantly higher CPFE scores than males, suggesting potential sex-specific differences in CPFE. Overall, our study establishes the first diagnostic framework for CPFE, providing a diagnostic model and clinical indicators that enable accurate classification and characterization of the syndrome.

MedAgentBoard: Benchmarking Multi-Agent Collaboration with Conventional Methods for Diverse Medical Tasks

Yinghao Zhu, Ziyi He, Haoran Hu, Xiaochen Zheng, Xichen Zhang, Zixiang Wang, Junyi Gao, Liantao Ma, Lequan Yu

arxiv logopreprintMay 18 2025
The rapid advancement of Large Language Models (LLMs) has stimulated interest in multi-agent collaboration for addressing complex medical tasks. However, the practical advantages of multi-agent collaboration approaches remain insufficiently understood. Existing evaluations often lack generalizability, failing to cover diverse tasks reflective of real-world clinical practice, and frequently omit rigorous comparisons against both single-LLM-based and established conventional methods. To address this critical gap, we introduce MedAgentBoard, a comprehensive benchmark for the systematic evaluation of multi-agent collaboration, single-LLM, and conventional approaches. MedAgentBoard encompasses four diverse medical task categories: (1) medical (visual) question answering, (2) lay summary generation, (3) structured Electronic Health Record (EHR) predictive modeling, and (4) clinical workflow automation, across text, medical images, and structured EHR data. Our extensive experiments reveal a nuanced landscape: while multi-agent collaboration demonstrates benefits in specific scenarios, such as enhancing task completeness in clinical workflow automation, it does not consistently outperform advanced single LLMs (e.g., in textual medical QA) or, critically, specialized conventional methods that generally maintain better performance in tasks like medical VQA and EHR-based prediction. MedAgentBoard offers a vital resource and actionable insights, emphasizing the necessity of a task-specific, evidence-based approach to selecting and developing AI solutions in medicine. It underscores that the inherent complexity and overhead of multi-agent collaboration must be carefully weighed against tangible performance gains. All code, datasets, detailed prompts, and experimental results are open-sourced at https://medagentboard.netlify.app/.

Mutual Evidential Deep Learning for Medical Image Segmentation

Yuanpeng He, Yali Bi, Lijian Li, Chi-Man Pun, Wenpin Jiao, Zhi Jin

arxiv logopreprintMay 18 2025
Existing semi-supervised medical segmentation co-learning frameworks have realized that model performance can be diminished by the biases in model recognition caused by low-quality pseudo-labels. Due to the averaging nature of their pseudo-label integration strategy, they fail to explore the reliability of pseudo-labels from different sources. In this paper, we propose a mutual evidential deep learning (MEDL) framework that offers a potentially viable solution for pseudo-label generation in semi-supervised learning from two perspectives. First, we introduce networks with different architectures to generate complementary evidence for unlabeled samples and adopt an improved class-aware evidential fusion to guide the confident synthesis of evidential predictions sourced from diverse architectural networks. Second, utilizing the uncertainty in the fused evidence, we design an asymptotic Fisher information-based evidential learning strategy. This strategy enables the model to initially focus on unlabeled samples with more reliable pseudo-labels, gradually shifting attention to samples with lower-quality pseudo-labels while avoiding over-penalization of mislabeled classes in high data uncertainty samples. Additionally, for labeled data, we continue to adopt an uncertainty-driven asymptotic learning strategy, gradually guiding the model to focus on challenging voxels. Extensive experiments on five mainstream datasets have demonstrated that MEDL achieves state-of-the-art performance.

Evaluating the Performance of Reasoning Large Language Models on Japanese Radiology Board Examination Questions.

Nakaura T, Takamure H, Kobayashi N, Shiraishi K, Yoshida N, Nagayama Y, Uetani H, Kidoh M, Funama Y, Hirai T

pubmed logopapersMay 17 2025
This study evaluates the performance, cost, and processing time of OpenAI's reasoning large language models (LLMs) (o1-preview, o1-mini) and their base models (GPT-4o, GPT-4o-mini) on Japanese radiology board examination questions. A total of 210 questions from the 2022-2023 official board examinations of the Japan Radiological Society were presented to each of the four LLMs. Performance was evaluated by calculating the percentage of correctly answered questions within six predefined radiology subspecialties. The total cost and processing time for each model were also recorded. The McNemar test was used to assess the statistical significance of differences in accuracy between paired model responses. The o1-preview achieved the highest accuracy (85.7%), significantly outperforming GPT-4o (73.3%, P<.001). Similarly, o1-mini (69.5%) performed significantly better than GPT-4o-mini (46.7%, P<.001). Across all radiology subspecialties, o1-preview consistently ranked highest. However, reasoning models incurred substantially higher costs (o1-preview: $17.10, o1-mini: $2.58) compared to their base counterparts (GPT-4o: $0.496, GPT-4o-mini: $0.04), and their processing times were approximately 3.7 and 1.2 times longer, respectively. Reasoning LLMs demonstrated markedly superior performance in answering radiology board exam questions compared to their base models, albeit at a substantially higher cost and increased processing time.
Page 39 of 45448 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.