Sort by:
Page 37 of 54537 results

Application of Convolutional Neural Network Denoising to Improve Cone Beam CT Myelographic Images.

Madhavan AA, Zhou Z, Thorne J, Kodet ML, Cutsforth-Gregory JK, Schievink WI, Mark IT, Schueler BA, Yu L

pubmed logopapersJun 17 2025
Cone beam CT is an imaging modality that provides high-resolution, cross-sectional imaging in the fluoroscopy suite. In neuroradiology, cone beam CT has been used for various applications including temporal bone imaging and during spinal and cerebral angiography. Furthermore, cone beam CT has been shown to improve imaging of spinal CSF leaks during myelography. One drawback of cone beam CT is that images have a relatively high noise level. In this technical report, we describe the first application of a high-resolution convolutional neural network to denoise cone beam CT myelographic images. We show examples of the resulting improvement in image quality for a variety of types of spinal CSF leaks. Further application of this technique is warranted to demonstrate its clinical utility and potential use for other cone beam CT applications.ABBREVIATIONS: CBCT = cone beam CT; CB-CTM = cone beam CT myelography; CTA = CT angiography; CVF = CSF-venous fistula; DSM = digital subtraction myelography; EID = energy integrating detector; FBP = filtered back-projection; SNR = signal-to-noise ratio.

Feasibility of Ultralow-Dose CT With Deep-Learning Reconstruction for Aneurysm Diameter Measurement in Post-EVAR Follow-Up: A Prospective Comparative Study With Conventional CT.

Matsushiro K, Okada T, Sasaki K, Gentsu T, Ueshima E, Sofue K, Yamanaka K, Hori M, Yamaguchi M, Sugimoto K, Okada K, Murakami T

pubmed logopapersJun 16 2025
We conducted a prospective study to evaluate the usefulness of ultralow-dose computed tomography (ULD-CT) with deep-learning reconstruction (DLR) compared with conventional standard-dose CT (SD-CT) for post-endovascular aneurysm repair (EVAR) surveillance. We prospectively performed post-EVAR surveillance using ULD-CT at a single center in 44 patients after they had received SD-CT. The ULD-CT images underwent DLR, whereas the SD-CT images underwent iterative reconstruction. Three radiologists blinded to the patient information and CT conditions independently measured the aneurysmal sac diameter and evaluated the overall image quality. Bland-Altman analysis and a linear mixed-effects model were used to assess and compare the measurement accuracy between SD-CT and ULD-CT. The mean CT dose index volume and dose-length product were significantly lower for ULD-CT (1.0 ± 0.3 mGy and 71.4 ± 26.5 mGy•cm) than that for SD-CT (6.9 ± 0.9 mGy and 500.9 ± 96.0 mGy•cm; p<0.001). The mean short diameters of the aneurysmal sac measured by the 3 observers were 46.7 ± 10.8 mm on SD-CT and 46.3 ± 10.8 mm on ULD-CT. The mean difference in the short diameter of the aneurysmal sac between ULD-CT and SD-CT was -0.37 mm (95% confidence interval, -0.6 to -0.12 mm). The intraobserver limits of agreement (LOA) for measurements by ULD-CT and SD-CT were -3.5 to 2.6, -2.8 to 1.9, and -2.9 to 2.3 for Observers 1, 2, and 3, respectively. The pairwise LOAs for assessing interobserver agreement, such as for the differences between Observers 1 and 2 measurements in SD-CT, were mostly within the predetermined acceptable range. The mean image-quality score was lower for ULD-CT (3.3 ± 0.6) than that for SD-CT (4.5 ± 0.5; p<0.001). Aneurysmal sac diameter measurements by ULD-CT with DLR were sufficiently accurate for post-EVAR surveillance, with substantial radiation reduction versus SD-CT.Clinical ImpactDeep-learning reconstruction (DLR) is implemented as a software-based algorithm rather than requiring dedicated hardware. As such, it is expected to be integrated into standard computed tomography (CT) systems in the near future. The ultralow-dose CT (ULD-CT) with DLR evaluated in this study has the potential to become widely accessible across various institutions. This advancement could substantially reduce radiation exposure in post-endovascular aneurysm repair (EVAR) CT imaging, thereby facilitating its adoption as a standard modality for post-EVAR surveillance.

Real-time cardiac cine MRI: A comparison of a diffusion probabilistic model with alternative state-of-the-art image reconstruction techniques for undersampled spiral acquisitions.

Schad O, Heidenreich JF, Petri N, Kleineisel J, Sauer S, Bley TA, Nordbeck P, Petritsch B, Wech T

pubmed logopapersJun 16 2025
Electrocardiogram (ECG)-gated cine imaging in breath-hold enables high-quality diagnostics in most patients but can be compromised by arrhythmia and inability to hold breath. Real-time cardiac MRI offers faster and robust exams without these limitations. To achieve sufficient acceleration, advanced reconstruction methods, which transfer data into high-quality images, are required. In this study, undersampled spiral balanced SSFP (bSSFP) real-time data in free-breathing were acquired at 1.5T in 16 healthy volunteers and five arrhythmic patients, with ECG-gated Cartesian cine in breath-hold serving as clinical reference. Image reconstructions were performed using a tailored and specifically trained score-based diffusion model, compared to a variational network and different compressed sensing approaches. The techniques were assessed using an expert reader study, scalar metric calculations, difference images against a segmented reference, and Bland-Altman analysis of cardiac functional parameters. In participants with irregular RR-cycles, spiral real-time acquisitions showed superior image quality compared to the clinical reference. Quantitative and qualitative metrics indicate enhanced image quality of the diffusion model in comparison to the alternative reconstruction methods, although improvements over the variational network were minor. Slightly higher ejection fractions for the real-time diffusion reconstructions were exhibited relative to the clinical references with a bias of 1.1 ± 5.7% for healthy subjects. The proposed real-time technique enables free-breathing acquisitions of spatio-temporal images with high quality, covering the entire heart in less than 1 min. Evaluation of ejection fraction using the ECG-gated reference can be vulnerable to arrhythmia and averaging effects, highlighting the need for real-time approaches. Prolonged inference times and stochastic variability of the diffusion reconstruction represent obstacles to overcome for clinical translation.

MoNetV2: Enhanced Motion Network for Freehand 3D Ultrasound Reconstruction

Mingyuan Luo, Xin Yang, Zhongnuo Yan, Yan Cao, Yuanji Zhang, Xindi Hu, Jin Wang, Haoxuan Ding, Wei Han, Litao Sun, Dong Ni

arxiv logopreprintJun 16 2025
Three-dimensional (3D) ultrasound (US) aims to provide sonographers with the spatial relationships of anatomical structures, playing a crucial role in clinical diagnosis. Recently, deep-learning-based freehand 3D US has made significant advancements. It reconstructs volumes by estimating transformations between images without external tracking. However, image-only reconstruction poses difficulties in reducing cumulative drift and further improving reconstruction accuracy, particularly in scenarios involving complex motion trajectories. In this context, we propose an enhanced motion network (MoNetV2) to enhance the accuracy and generalizability of reconstruction under diverse scanning velocities and tactics. First, we propose a sensor-based temporal and multi-branch structure that fuses image and motion information from a velocity perspective to improve image-only reconstruction accuracy. Second, we devise an online multi-level consistency constraint that exploits the inherent consistency of scans to handle various scanning velocities and tactics. This constraint exploits both scan-level velocity consistency, path-level appearance consistency, and patch-level motion consistency to supervise inter-frame transformation estimation. Third, we distill an online multi-modal self-supervised strategy that leverages the correlation between network estimation and motion information to further reduce cumulative errors. Extensive experiments clearly demonstrate that MoNetV2 surpasses existing methods in both reconstruction quality and generalizability performance across three large datasets.

ViT-NeBLa: A Hybrid Vision Transformer and Neural Beer-Lambert Framework for Single-View 3D Reconstruction of Oral Anatomy from Panoramic Radiographs

Bikram Keshari Parida, Anusree P. Sunilkumar, Abhijit Sen, Wonsang You

arxiv logopreprintJun 16 2025
Dental diagnosis relies on two primary imaging modalities: panoramic radiographs (PX) providing 2D oral cavity representations, and Cone-Beam Computed Tomography (CBCT) offering detailed 3D anatomical information. While PX images are cost-effective and accessible, their lack of depth information limits diagnostic accuracy. CBCT addresses this but presents drawbacks including higher costs, increased radiation exposure, and limited accessibility. Existing reconstruction models further complicate the process by requiring CBCT flattening or prior dental arch information, often unavailable clinically. We introduce ViT-NeBLa, a vision transformer-based Neural Beer-Lambert model enabling accurate 3D reconstruction directly from single PX. Our key innovations include: (1) enhancing the NeBLa framework with Vision Transformers for improved reconstruction capabilities without requiring CBCT flattening or prior dental arch information, (2) implementing a novel horseshoe-shaped point sampling strategy with non-intersecting rays that eliminates intermediate density aggregation required by existing models due to intersecting rays, reducing sampling point computations by $52 \%$, (3) replacing CNN-based U-Net with a hybrid ViT-CNN architecture for superior global and local feature extraction, and (4) implementing learnable hash positional encoding for better higher-dimensional representation of 3D sample points compared to existing Fourier-based dense positional encoding. Experiments demonstrate that ViT-NeBLa significantly outperforms prior state-of-the-art methods both quantitatively and qualitatively, offering a cost-effective, radiation-efficient alternative for enhanced dental diagnostics.

Artificial intelligence (AI) and CT in abdominal imaging: image reconstruction and beyond.

Pisuchpen N, Srinivas Rao S, Noda Y, Kongboonvijit S, Rezaei A, Kambadakone A

pubmed logopapersJun 16 2025
Computed tomography (CT) is a cornerstone of abdominal imaging, playing a vital role in accurate diagnosis, appropriate treatment planning, and disease monitoring. The evolution of artificial intelligence (AI) in imaging has introduced deep learning-based reconstruction (DLR) techniques that enhance image quality, reduce radiation dose, and improve workflow efficiency. Traditional image reconstruction methods, including filtered back projection (FBP) and iterative reconstruction (IR), have limitations such as high noise levels and artificial image texture. DLR overcomes these challenges by leveraging convolutional neural networks to generate high-fidelity images while preserving anatomical details. Recent advances in vendor-specific and vendor-agnostic DLR algorithms, such as TrueFidelity, AiCE, and Precise Image, have demonstrated significant improvements in contrast-to-noise ratio, lesion detection, and diagnostic confidence across various abdominal organs, including the liver, pancreas, and kidneys. Furthermore, AI extends beyond image reconstruction to applications such as low contrast lesion detection, quantitative imaging, and workflow optimization, augmenting radiologists' efficiency and diagnostic accuracy. However, challenges remain in clinical validation, standardization, and widespread adoption. This review explores the principles, advancements, and future directions of AI-driven CT image reconstruction and its expanding role in abdominal imaging.

Utility of Thin-slice Single-shot T2-weighted MR Imaging with Deep Learning Reconstruction as a Protocol for Evaluating Pancreatic Cystic Lesions.

Ozaki K, Hasegawa H, Kwon J, Katsumata Y, Yoneyama M, Ishida S, Iyoda T, Sakamoto M, Aramaki S, Tanahashi Y, Goshima S

pubmed logopapersJun 14 2025
To assess the effects of industry-developed deep learning reconstruction with super resolution (DLR-SR) on single-shot turbo spin-echo (SshTSE) images with thickness of 2 mm with DLR (SshTSE<sup>2mm</sup>) relative to those of images with a thickness of 5 mm with DLR (SSshTSE<sup>5mm</sup>) in the patients with pancreatic cystic lesions. Thirty consecutive patients who underwent abdominal MRI examinations because of pancreatic cystic lesions under observation between June 2024 and July 2024 were enrolled. We qualitatively and quantitatively evaluated the image qualities of SshTSE<sup>2mm</sup> and SshTSE<sup>5mm</sup> with and without DLR-SR. The SNRs of the pancreas, spleen, paraspinal muscle, peripancreatic fat, and pancreatic cystic lesions of SshTSE<sup>2mm</sup> with and without DLR-SR did not decrease in compared to that of SshTSE<sup>5mm</sup> with and without DLR-SR. There were no significant differences in contrast-to-noise ratios (CNRs) of the pancreas-to-cystic lesions and fat between 4 types of images. SshTSE<sup>2mm</sup> with DLR-SR had the highest image quality related to pancreas edge sharpness, perceived coarseness pancreatic duct clarity, noise, artifacts, overall image quality, and diagnostic confidence of cystic lesions, followed by SshTSE<sup>2mm</sup> without DLR-SR and SshTSE<sup>5mm</sup> with and without DLR-SR (P  <  0.0001). SshTSE<sup>2mm</sup> with DLR-SR images had better quality than the other images and did not have decreased SNRs and CNRs. The thin-slice SshTSE with DLR-SR may be feasible and clinically useful for the evaluation of patients with pancreatic cystic lesions.

Quantitative and qualitative assessment of ultra-low-dose paranasal sinus CT using deep learning image reconstruction: a comparison with hybrid iterative reconstruction.

Otgonbaatar C, Lee D, Choi J, Jang H, Shim H, Ryoo I, Jung HN, Suh S

pubmed logopapersJun 13 2025
This study aimed to evaluate the quantitative and qualitative performances of ultra-low-dose computed tomography (CT) with deep learning image reconstruction (DLR) compared with those of hybrid iterative reconstruction (IR) for preoperative paranasal sinus (PNS) imaging. This retrospective analysis included 132 patients who underwent non-contrast ultra-low-dose sinus CT (0.03 mSv). Images were reconstructed using hybrid IR and DLR. Objective image quality metrics, including image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), noise power spectrum (NPS), and no-reference perceptual image sharpness, were assessed. Two board-certified radiologists independently performed subjective image quality evaluations. The ultra-low-dose CT protocol achieved a low radiation dose (effective dose: 0.03 mSv). DLR showed significantly lower image noise (28.62 ± 4.83 Hounsfield units) compared to hybrid IR (140.70 ± 16.04, p < 0.001), with DLR yielding smoother and more uniform images. DLR demonstrated significantly improved SNR (22.47 ± 5.82 vs 9.14 ± 2.45, p < 0.001) and CNR (71.88 ± 14.03 vs 11.81 ± 1.50, p < 0.001). NPS analysis revealed that DLR reduced the noise magnitude and NPS peak values. Additionally, DLR demonstrated significantly sharper images (no-reference perceptual sharpness metric: 0.56 ± 0.04) compared to hybrid IR (0.36 ± 0.01). Radiologists rated DLR as superior in overall image quality, bone structure visualization, and diagnostic confidence compared to hybrid IR at ultra-low-dose CT. DLR significantly outperformed hybrid IR in ultra-low-dose PNS CT by reducing image noise, improving SNR and CNR, enhancing image sharpness, and maintaining critical anatomical visualization, demonstrating its potential for effective preoperative planning with minimal radiation exposure. Question Ultra-low-dose CT for paranasal sinuses is essential for patients requiring repeated scans and functional endoscopic sinus surgery (FESS) planning to reduce cumulative radiation exposure. Findings DLR outperformed hybrid IR in ultra-low-dose paranasal sinus CT. Clinical relevance Ultra-low-dose CT with DLR delivers sufficient image quality for detailed surgical planning, effectively minimizing unnecessary radiation exposure to enhance patient safety.

Impact of Deep Learning-Based Image Conversion on Fully Automated Coronary Artery Calcium Scoring Using Thin-Slice, Sharp-Kernel, Non-Gated, Low-Dose Chest CT Scans: A Multi-Center Study.

Kim C, Hong S, Choi H, Yoo WS, Kim JY, Chang S, Park CH, Hong SJ, Yang DH, Yong HS, van Assen M, De Cecco CN, Suh YJ

pubmed logopapersJun 13 2025
To evaluate the impact of deep learning-based image conversion on the accuracy of automated coronary artery calcium quantification using thin-slice, sharp-kernel, non-gated, low-dose chest computed tomography (LDCT) images collected from multiple institutions. A total of 225 pairs of LDCT and calcium scoring CT (CSCT) images scanned at 120 kVp and acquired from the same patient within a 6-month interval were retrospectively collected from four institutions. Image conversion was performed for LDCT images using proprietary software programs to simulate conventional CSCT. This process included 1) deep learning-based kernel conversion of low-dose, high-frequency, sharp kernels to simulate standard-dose, low-frequency kernels, and 2) thickness conversion using the raysum method to convert 1-mm or 1.25-mm thickness images to 3-mm thickness. Automated Agaston scoring was conducted on the LDCT scans before (LDCT-Org<sub>auto</sub>) and after the image conversion (LDCT-CONV<sub>auto</sub>). Manual scoring was performed on the CSCT images (CSCT<sub>manual</sub>) and used as a reference standard. The accuracy of automated Agaston scores and risk severity categorization based on the automated scoring on LDCT scans was analyzed compared to the reference standard, using the Bland-Altman analysis, concordance correlation coefficient (CCC), and weighted kappa (κ) statistic. LDCT-CONV<sub>auto</sub> demonstrated a reduced bias for Agaston score, compared with CSCT<sub>manual</sub>, than LDCT-Org<sub>auto</sub> did (-3.45 vs. 206.7). LDCT-CONV<sub>auto</sub> showed a higher CCC than LDCT-Org<sub>auto</sub> did (0.881 [95% confidence interval {CI}, 0.750-0.960] vs. 0.269 [95% CI, 0.129-0.430]). In terms of risk category assignment, LDCT-Org<sub>auto</sub> exhibited poor agreement with CSCT<sub>manual</sub> (weighted κ = 0.115 [95% CI, 0.082-0.154]), whereas LDCT-CONV<sub>auto</sub> achieved good agreement (weighted κ = 0.792 [95% CI, 0.731-0.847]). Deep learning-based conversion of LDCT images originally obtained with thin slices and a sharp kernel can enhance the accuracy of automated coronary artery calcium score measurement using the images.

Fast MRI of bones in the knee -- An AI-driven reconstruction approach for adiabatic inversion recovery prepared ultra-short echo time sequences

Philipp Hans Nunn, Henner Huflage, Jan-Peter Grunz, Philipp Gruschwitz, Oliver Schad, Thorsten Alexander Bley, Johannes Tran-Gia, Tobias Wech

arxiv logopreprintJun 13 2025
Purpose: Inversion recovery prepared ultra-short echo time (IR-UTE)-based MRI enables radiation-free visualization of osseous tissue. However, sufficient signal-to-noise ratio (SNR) can only be obtained with long acquisition times. This study proposes a data-driven approach to reconstruct undersampled IR-UTE knee data, thereby accelerating MR-based 3D imaging of bones. Methods: Data were acquired with a 3D radial IR-UTE pulse sequence, implemented using the open-source framework Pulseq. A denoising convolutional neural network (DnCNN) was trained in a supervised fashion using data from eight healthy subjects. Conjugate gradient sensitivity encoding (CG-SENSE) reconstructions of different retrospectively undersampled subsets (corresponding to 2.5-min, 5-min and 10-min acquisition times) were paired with the respective reference dataset reconstruction (30-min acquisition time). The DnCNN was then integrated into a Landweber-based reconstruction algorithm, enabling physics-based iterative reconstruction. Quantitative evaluations of the approach were performed using one prospectively accelerated scan as well as retrospectively undersampled datasets from four additional healthy subjects, by assessing the structural similarity index measure (SSIM), the peak signal-to-noise ratio (PSNR), the normalized root mean squared error (NRMSE), and the perceptual sharpness index (PSI). Results: Both the reconstructions of prospective and retrospective acquisitions showed good agreement with the reference dataset, indicating high image quality, particularly for an acquisition time of 5 min. The proposed method effectively preserves contrast and structural details while suppressing noise, albeit with a slight reduction in sharpness. Conclusion: The proposed method is poised to enable MR-based bone assessment in the knee within clinically feasible scan times.
Page 37 of 54537 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.