Sort by:
Page 37 of 38373 results

Impact of tracer uptake rate on quantification accuracy of myocardial blood flow in PET: A simulation study.

Hong X, Sanaat A, Salimi Y, Nkoulou R, Arabi H, Lu L, Zaidi H

pubmed logopapersMay 8 2025
Cardiac perfusion PET is commonly used to assess ischemia and cardiovascular risk, which enables quantitative measurements of myocardial blood flow (MBF) through kinetic modeling. However, the estimation of kinetic parameters is challenging due to the noisy nature of short dynamic frames and limited sample data points. This work aimed to investigate the errors in MBF estimation in PET through a simulation study and to evaluate different parameter estimation approaches, including a deep learning (DL) method. Simulated studies were generated using digital phantoms based on cardiac segmentations from 55 clinical CT images. We employed the irreversible 2-tissue compartmental model and simulated dynamic <sup>13</sup>N-ammonia PET scans under both rest and stress conditions (220 cases each). The simulations covered a rest K<sub>1</sub> range of 0.6 to 1.2 and a stress K<sub>1</sub> range of 1.2 to 3.6 (unit: mL/min/g) in the myocardium. A transformer-based DL model was trained on the simulated dataset to predict parametric images (PIMs) from noisy PET image frames and was validated using 5-fold cross-validation. We compared the DL method with the voxel-wise nonlinear least squares (NLS) fitting applied to the dynamic images, using either Gaussian filter (GF) smoothing (GF-NLS) or a dynamic nonlocal means (DNLM) algorithm for denoising (DNLM-NLS). Two patients with coronary CT angiography (CTA) and fractional flow reserve (FFR) were enrolled to test the feasibility of applying DL models on clinical PET data. The DL method showed clearer image structures with reduced noise compared to the traditional NLS-based methods. In terms of mean absolute relative error (MARE), as the rest K<sub>1</sub> values increased from 0.6 to 1.2 mL/min/g, the overall bias in myocardium K<sub>1</sub> estimates decreased from approximately 58% to 45% for the NLS-based methods while the DL method showed a reduction in MARE from 42% to 18%. For stress data, as the stress K<sub>1</sub> decreased from 3.6 to 1.2 mL/min/g, the MARE increased from 30% to 70% for the GF-NLS method. In contrast, both the DNLM-NLS (average: 42%) and the DL methods (average: 20%) demonstrated significantly smaller MARE changes as stress K<sub>1</sub> varied. Regarding the regional mean bias (±standard deviation), the GF-NLS method had a bias of 6.30% (±8.35%) of rest K<sub>1</sub>, compared to 1.10% (±8.21%) for DNLM-NLS and 6.28% (±14.05%) for the DL method. For the stress K<sub>1</sub>, the GF-NLS showed a mean bias of 10.72% (±9.34%) compared to 1.69% (±8.82%) for DNLM-NLS and -10.55% (±9.81%) for the DL method. This study showed that an increase in the tracer uptake rate (K<sub>1</sub>) corresponded to improved accuracy and precision in MBF quantification, whereas lower tracer uptake resulted in higher noise in dynamic PET and poorer parameter estimates. Utilizing denoising techniques or DL approaches can mitigate noise-induced bias in PET parametric imaging.

Hybrid method for automatic initialization and segmentation of ventricular on large-scale cardiovascular magnetic resonance images.

Pan N, Li Z, Xu C, Gao J, Hu H

pubmed logopapersMay 7 2025
Cardiovascular diseases are the number one cause of death globally, making cardiac magnetic resonance image segmentation a popular research topic. Existing schemas relying on manual user interaction or semi-automatic segmentation are infeasible when dealing thousands of cardiac MRI studies. Thus, we proposed a full automatic and robust algorithm for large-scale cardiac MRI segmentation by combining the advantages of deep learning localization and 3D-ASM restriction. The proposed method comprises several key techniques: 1) a hybrid network integrating CNNs and Transformer as a encoder with the EFG (Edge feature guidance) module (named as CTr-HNs) to localize the target regions of the cardiac on MRI images, 2) initial shape acquisition by alignment of coarse segmentation contours to the initial surface model of 3D-ASM, 3) refinement of the initial shape to cover all slices of MRI in the short axis by complex transformation. The datasets used are from the UK BioBank and the CAP (Cardiac Atlas Project). In cardiac coarse segmentation experiments on MR images, Dice coefficients (Dice), mean contour distances (MCD), and mean Hausdorff distances (HD95) are used to evaluate segmentation performance. In SPASM experiments, Point-to-surface (P2S) distances, Dice score are compared between automatic results and ground truth. The CTr-HNs from our proposed method achieves Dice coefficients (Dice), mean contour distances (MCD), and mean Hausdorff distances (HD95) of 0.95, 0.10 and 1.54 for the LV segmentation respectively, 0.88, 0.13 and 1.94 for the LV myocardium segmentation, and 0.91, 0.24 and 3.25 for the RV segmentation. The overall P2S errors from our proposed schema is 1.45 mm. For endocardium and epicardium, the Dice scores are 0.87 and 0.91 respectively. Our experimental results show that the proposed schema can automatically analyze large-scale quantification from population cardiac images with robustness and accuracy.

Impact of the recent advances in coronary artery disease imaging on pilot medical certification and aviation safety: current state and future perspective.

Benjamin MM, Rabbat MG, Park W, Benjamin M, Davenport E

pubmed logopapersMay 7 2025
Coronary artery disease (CAD) is highly prevalent among pilots due to the nature of their lifestyle, and occupational stresses. CAD is one the most common conditions affecting pilots' medical certification and is frequently nondisclosed by pilots fearing the loss of their certification. Traditional screening methods, such as resting electrocardiograms (EKGs) and functional stress tests, have limitations, especially in detecting non-obstructive CAD. Recent advances in cardiac imaging are challenging the current paradigms of CAD screening and risk assessment protocols, offering tools uniquely suited to address the occupational health challenges faced by pilots. Coronary artery calcium scoring (CACS) has proven valuable in refining risk stratification in asymptomatic individuals. Coronary computed tomography angiography (CCTA), is being increasingly adopted as a superior tool for ruling out CAD in symptomatic individuals, assessing plaque burden as well as morphologically identifying vulnerable plaque. CT-derived fractional flow reserve (CT-FFR) adds a physiologic component to the anatomical prowess of CCTA. Cardiac magnetic resonance imaging (CMR) is now used as a prognosticating tool following a coronary event as well as a stress testing modality. Investigational technologies like pericoronary fat attenuation and artificial intelligence (AI)-enabled plaque quantification hold the promise of enhancing diagnostic accuracy and risk stratification. This review highlights the interplay between occupational demands, regulatory considerations, and the limitations of the traditional modalities for pilot CAD screening and surveillance. We also discuss the potential role of the recent advances in cardiac imaging in optimizing pilot health and flight safety.

Nonperiodic dynamic CT reconstruction using backward-warping INR with regularization of diffeomorphism (BIRD)

Muge Du, Zhuozhao Zheng, Wenying Wang, Guotao Quan, Wuliang Shi, Le Shen, Li Zhang, Liang Li, Yinong Liu, Yuxiang Xing

arxiv logopreprintMay 6 2025
Dynamic computed tomography (CT) reconstruction faces significant challenges in addressing motion artifacts, particularly for nonperiodic rapid movements such as cardiac imaging with fast heart rates. Traditional methods struggle with the extreme limited-angle problems inherent in nonperiodic cases. Deep learning methods have improved performance but face generalization challenges. Recent implicit neural representation (INR) techniques show promise through self-supervised deep learning, but have critical limitations: computational inefficiency due to forward-warping modeling, difficulty balancing DVF complexity with anatomical plausibility, and challenges in preserving fine details without additional patient-specific pre-scans. This paper presents a novel INR-based framework, BIRD, for nonperiodic dynamic CT reconstruction. It addresses these challenges through four key contributions: (1) backward-warping deformation that enables direct computation of each dynamic voxel with significantly reduced computational cost, (2) diffeomorphism-based DVF regularization that ensures anatomically plausible deformations while maintaining representational capacity, (3) motion-compensated analytical reconstruction that enhances fine details without requiring additional pre-scans, and (4) dimensional-reduction design for efficient 4D coordinate encoding. Through various simulations and practical studies, including digital and physical phantoms and retrospective patient data, we demonstrate the effectiveness of our approach for nonperiodic dynamic CT reconstruction with enhanced details and reduced motion artifacts. The proposed framework enables more accurate dynamic CT reconstruction with potential clinical applications, such as one-beat cardiac reconstruction, cinematic image sequences for functional imaging, and motion artifact reduction in conventional CT scans.

Physics-informed neural network estimation of active material properties in time-dependent cardiac biomechanical models

Matthias Höfler, Francesco Regazzoni, Stefano Pagani, Elias Karabelas, Christoph Augustin, Gundolf Haase, Gernot Plank, Federica Caforio

arxiv logopreprintMay 6 2025
Active stress models in cardiac biomechanics account for the mechanical deformation caused by muscle activity, thus providing a link between the electrophysiological and mechanical properties of the tissue. The accurate assessment of active stress parameters is fundamental for a precise understanding of myocardial function but remains difficult to achieve in a clinical setting, especially when only displacement and strain data from medical imaging modalities are available. This work investigates, through an in-silico study, the application of physics-informed neural networks (PINNs) for inferring active contractility parameters in time-dependent cardiac biomechanical models from these types of imaging data. In particular, by parametrising the sought state and parameter field with two neural networks, respectively, and formulating an energy minimisation problem to search for the optimal network parameters, we are able to reconstruct in various settings active stress fields in the presence of noise and with a high spatial resolution. To this end, we also advance the vanilla PINN learning algorithm with the use of adaptive weighting schemes, ad-hoc regularisation strategies, Fourier features, and suitable network architectures. In addition, we thoroughly analyse the influence of the loss weights in the reconstruction of active stress parameters. Finally, we apply the method to the characterisation of tissue inhomogeneities and detection of fibrotic scars in myocardial tissue. This approach opens a new pathway to significantly improve the diagnosis, treatment planning, and management of heart conditions associated with cardiac fibrosis.

Phenotype-Guided Generative Model for High-Fidelity Cardiac MRI Synthesis: Advancing Pretraining and Clinical Applications

Ziyu Li, Yujian Hu, Zhengyao Ding, Yiheng Mao, Haitao Li, Fan Yi, Hongkun Zhang, Zhengxing Huang

arxiv logopreprintMay 6 2025
Cardiac Magnetic Resonance (CMR) imaging is a vital non-invasive tool for diagnosing heart diseases and evaluating cardiac health. However, the limited availability of large-scale, high-quality CMR datasets poses a major challenge to the effective application of artificial intelligence (AI) in this domain. Even the amount of unlabeled data and the health status it covers are difficult to meet the needs of model pretraining, which hinders the performance of AI models on downstream tasks. In this study, we present Cardiac Phenotype-Guided CMR Generation (CPGG), a novel approach for generating diverse CMR data that covers a wide spectrum of cardiac health status. The CPGG framework consists of two stages: in the first stage, a generative model is trained using cardiac phenotypes derived from CMR data; in the second stage, a masked autoregressive diffusion model, conditioned on these phenotypes, generates high-fidelity CMR cine sequences that capture both structural and functional features of the heart in a fine-grained manner. We synthesized a massive amount of CMR to expand the pretraining data. Experimental results show that CPGG generates high-quality synthetic CMR data, significantly improving performance on various downstream tasks, including diagnosis and cardiac phenotypes prediction. These gains are demonstrated across both public and private datasets, highlighting the effectiveness of our approach. Code is availabel at https://anonymous.4open.science/r/CPGG.

Deep Learning-Based CT-Less Cardiac Segmentation of PET Images: A Robust Methodology for Multi-Tracer Nuclear Cardiovascular Imaging.

Salimi Y, Mansouri Z, Nkoulou R, Mainta I, Zaidi H

pubmed logopapersMay 6 2025
Quantitative cardiovascular PET/CT imaging is useful in the diagnosis of multiple cardiac perfusion and motion pathologies. The common approach for cardiac segmentation consists in using co-registered CT images, exploiting publicly available deep learning (DL)-based segmentation models. However, the mismatch between structural CT images and PET uptake limits the usefulness of these approaches. Besides, the performance of DL models is not consistent over low-dose or ultra-low-dose CT images commonly used in clinical PET/CT imaging. In this work, we developed a DL-based methodology to tackle this issue by segmenting directly cardiac PET images. This study included 406 cardiac PET images from 146 patients (43 <sup>18</sup>F-FDG, 329 <sup>13</sup>N-NH<sub>3</sub>, and 37 <sup>82</sup>Rb images). Using previously trained DL nnU-Net models in our group, we segmented the whole heart and the three main cardiac components, namely the left myocardium (LM), left ventricle cavity (LV), and right ventricle (RV) on co-registered CT images. The segmentation was resampled to PET resolution and edited through a combination of automated image processing and manual correction. The corrected segmentation masks and SUV PET images were fed to a nnU-Net V2 pipeline to be trained in fivefold data split strategy by defining two tasks: task #1 for whole cardiac segmentation and task #2 for segmentation of three cardiac components. Fifteen cardiac images were used as external validation set. The DL delineated masks were compared with standard of reference masks using Dice coefficient, Jaccard distance, mean surface distance, and segment volume relative error (%). Task #1 average Dice coefficient in internal validation fivefold was 0.932 ± 0.033. The average Dice on the 15 external cases were comparable with the fivefold Dice reaching an average of 0.941 ± 0.018. Task #2 average Dice in fivefold validation was 0.88 ± 0.063, 0.828 ± 0.091, and 0.876 ± 0.062 for LM, LV, and RV, respectively. There was no statistically significant difference among the Dice coefficients, neither between images acquired by three radiotracers nor between the different folds (P-values >  > 0.05). The overall average volume prediction error in cardiac components segmentation was less than 2%. We developed an automated DL-based segmentation pipeline to segment the whole heart and cardiac components with acceptable accuracy and robust performance in the external test set and over three radiotracers used in nuclear cardiovascular imaging. The proposed methodology can overcome unreliable segmentations performed on CT images.

Artificial intelligence-based echocardiography assessment to detect pulmonary hypertension.

Salehi M, Alabed S, Sharkey M, Maiter A, Dwivedi K, Yardibi T, Selej M, Hameed A, Charalampopoulos A, Kiely DG, Swift AJ

pubmed logopapersMay 1 2025
Tricuspid regurgitation jet velocity (TRJV) on echocardiography is used for screening patients with suspected pulmonary hypertension (PH). Artificial intelligence (AI) tools, such as the US2.AI, have been developed for automated evaluation of echocardiograms and can yield measurements that aid PH detection. This study evaluated the performance and utility of the US2.AI in a consecutive cohort of patients with suspected PH. 1031 patients who had been investigated for suspected PH between 2009-2021 were retrospectively identified from the ASPIRE registry. All patients had undergone echocardiography and right heart catheterisation (RHC). Based on RHC results, 771 (75%) patients with a mean pulmonary arterial pressure >20 mmHg were classified as having a diagnosis of PH (as per the 2022 European guidelines). Echocardiograms were evaluated manually and by the US2.AI tool to yield TRJV measurements. The AI tool demonstrated high interpretation yield, successfully measuring TRJV in 87% of echocardiograms. Manually and automatically derived TRJV values showed excellent agreement (intraclass correlation coefficient 0.94, 95% CI 0.94-0.95) with minimal bias (Bland-Altman analysis). Automated TRJV measurements showed equally high diagnostic accuracy for PH as manual measurements (area under the curve 0.88, 95% CI 0.84-0.90 <i>versus</i> 0.88, 95% CI 0.86-0.91). Automated TRJV measurements on echocardiography were similar to manual measurements, with similarly high and noninferior diagnostic accuracy for PH. These findings demonstrate that automated measurement of TRJV on echocardiography is feasible, accurate and reliable and support the implementation of AI-based approaches to echocardiogram evaluation and diagnostic imaging for PH.

Automated Bi-Ventricular Segmentation and Regional Cardiac Wall Motion Analysis for Rat Models of Pulmonary Hypertension.

Niglas M, Baxan N, Ashek A, Zhao L, Duan J, O'Regan D, Dawes TJW, Nien-Chen C, Xie C, Bai W, Zhao L

pubmed logopapersApr 1 2025
Artificial intelligence-based cardiac motion mapping offers predictive insights into pulmonary hypertension (PH) disease progression and its impact on the heart. We proposed an automated deep learning pipeline for bi-ventricular segmentation and 3D wall motion analysis in PH rodent models for bridging the clinical developments. A data set of 163 short-axis cine cardiac magnetic resonance scans were collected longitudinally from monocrotaline (MCT) and Sugen-hypoxia (SuHx) PH rats and used for training a fully convolutional network for automated segmentation. The model produced an accurate annotation in < 1 s for each scan (Dice metric > 0.92). High-resolution atlas fitting was performed to produce 3D cardiac mesh models and calculate the regional wall motion between end-diastole and end-systole. Prominent right ventricular hypokinesia was observed in PH rats (-37.7% ± 12.2 MCT; -38.6% ± 6.9 SuHx) compared to healthy controls, attributed primarily to the loss in basal longitudinal and apical radial motion. This automated bi-ventricular rat-specific pipeline provided an efficient and novel translational tool for rodent studies in alignment with clinical cardiac imaging AI developments.

A plaque recognition algorithm for coronary OCT images by Dense Atrous Convolution and attention mechanism.

Meng H, Zhao R, Zhang Y, Zhang B, Zhang C, Wang D, Sun J

pubmed logopapersJan 1 2025
Currently, plaque segmentation in Optical Coherence Tomography (OCT) images of coronary arteries is primarily carried out manually by physicians, and the accuracy of existing automatic segmentation techniques needs further improvement. To furnish efficient and precise decision support, automated detection of plaques in coronary OCT images holds paramount importance. For addressing these challenges, we propose a novel deep learning algorithm featuring Dense Atrous Convolution (DAC) and attention mechanism to realize high-precision segmentation and classification of Coronary artery plaques. Then, a relatively well-established dataset covering 760 original images, expanded to 8,000 using data enhancement. This dataset serves as a significant resource for future research endeavors. The experimental results demonstrate that the dice coefficients of calcified, fibrous, and lipid plaques are 0.913, 0.900, and 0.879, respectively, surpassing those generated by five other conventional medical image segmentation networks. These outcomes strongly attest to the effectiveness and superiority of our proposed algorithm in the task of automatic coronary artery plaque segmentation.
Page 37 of 38373 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.